Metagenomic analysis of the canine oral cavity as revealed by high-throughput pyrosequencing of the 16S rRNA gene

2013 ◽  
Vol 162 (2-4) ◽  
pp. 891-898 ◽  
Author(s):  
Amy Sturgeon ◽  
Jason W. Stull ◽  
Marcio C. Costa ◽  
J. Scott Weese
PLoS ONE ◽  
2012 ◽  
Vol 7 (7) ◽  
pp. e41484 ◽  
Author(s):  
Marcio C. Costa ◽  
Luis G. Arroyo ◽  
Emma Allen-Vercoe ◽  
Henry R. Stämpfli ◽  
Peter T. Kim ◽  
...  

2018 ◽  
Author(s):  
Qianqian Liu ◽  
Feizhou Zhu ◽  
Liyu Chen ◽  
Meihua Xu ◽  
Jianwei Chen ◽  
...  

The microbiota in the human gut is not only a complicated microecological system but also plays important roles in both health and disease. In order to understand the roles of these gut bacteria, we determined the distribution of microbiota in different regions of the gut by sequencing the 16S rRNA gene V4 region of the bacteria in the saliva, gastric juice, and stool of healthy individuals. The 16S rRNA gene V3-V5 region sequences of saliva and stool microbiota were obtained from Human Microbiome Project (HMP) and the V4 sequence was obtained from the V3-V5 sequences by a program designed by Perl language. We found that the microbiota of the gastric juice is more similar to those in the saliva rather than that in the stool. The frequency of some taxa was significantly different among the three groups with the Streptococcus, Veillonella, Oribacterium, Selenomonas, Actinomyces, and Granulicatella most abundant in the saliva; the Prevotella, Neisseria, Actinobacillus, Treponema, and Helicobacter most abundant in the gastric juice; and the Bacteroides, Parabacteroides, Faecalibacterium, Sutterella, Ruminococcus, Oscillospira and Phascolarctobacterium most abundant in the stool. In addition, results from PICRUSt analyses suggest that the functions of microbiota in the gastric juice are more similar as those in the saliva than in the stool. Moreover, we also found that the membrane transport of the microbiota in the saliva is higher than that in the stool and gastric juice. To our knowledge, this is the first comprehensive comparison of microbiota in the human oral cavity, stomach, and intestine.


2019 ◽  
Author(s):  
Jean-Claude OGIER ◽  
Sylvie Pagès ◽  
Maxime Galan ◽  
Matthieu Barret ◽  
Sophie Gaudriault

Abstract Background Microbiome composition is frequently studied by the amplification and high-throughput sequencing of specific molecular markers (metabarcoding). Various hypervariable regions of the 16S rRNA gene are classically used to estimate bacterial diversity, but other universal bacterial markers with a finer taxonomic resolution could be employed. We compared specificity and sensitivity between a portion of the rpoB gene and the V3V4 hypervariable region of the 16S rRNA gene. Results We first designed universal primers for rpoB suitable for use with Illumina sequencing-based technology and constructed a reference rpoB database of 45,000 sequences. The rpoB and V3V4 markers were amplified and sequenced from (i) a mock community of 19 bacterial strains from both Gram-negative and Gram-positive lineages; (ii) bacterial assemblages associated with entomopathogenic nematodes. In metabarcoding analyses of mock communities with two analytical pipelines (FROGS and DADA2), the estimated diversity captured with the rpoB marker resembled the expected composition of these mock communities more closely than that captured with V3V4. The rpoB marker had a higher level of taxonomic affiliation, a higher sensitivity (detection of all the species present in the mock communities), and a higher specificity (low rates of spurious OTU detection) than V3V4. We applied both primers to infective juveniles of the nematode Steinernema glaseri. Both markers showed the bacterial community associated with this nematode to be of low diversity (< 50 OTUs), but only rpoB reliably detected the symbiotic bacterium Xenorhabdus poinarii. Conclusions Our results confirm that different microbiota composition data may be obtained with different markers. We found that rpoB was a highly appropriate marker for assessing the taxonomic structure of mock communities and the nematode microbiota. Further studies on other ecosystems should be considered to evaluate the universal usefulness of the rpoB marker. Our data highlight two crucial elements that should be taken into account to ensure more reliable and accurate descriptions of microbial diversity in high-throughput amplicon sequencing analyses: i) the need to include mock communities as controls; ii) the advantages of using a multigenic approach including at least one housekeeping gene (rpoB is a good candidate) and one variable region of the 16S rRNA gene.


2019 ◽  
Author(s):  
Jean-Claude OGIER ◽  
Sylvie Pagès ◽  
Maxime Galan ◽  
Matthieu Barret ◽  
Sophie Gaudriault

Abstract Background Microbiome composition is frequently studied by the amplification and high-throughput sequencing of specific molecular markers (metabarcoding). Various hypervariable regions of the 16S rRNA gene are classically used to estimate bacterial diversity, but other universal bacterial markers with a finer taxonomic resolution could be employed. We compared specificity and sensitivity between a portion of the rpoB gene and the V3V4 hypervariable region of the 16S rRNA gene. Results We first designed universal primers for rpoB suitable for use with Illumina sequencing-based technology and constructed a reference rpoB database of 45,000 sequences. The rpoB and V3V4 markers were amplified and sequenced from (i) a mock community of 19 bacterial strains from both Gram-negative and Gram-positive lineages; (ii) bacterial assemblages associated with entomopathogenic nematodes. In metabarcoding analyses of mock communities with two analytical pipelines (FROGS and DADA2), the estimated diversity captured with the rpoB marker resembled the expected composition of these mock communities more closely than that captured with V3V4. The rpoB marker had a higher level of taxonomic affiliation, a higher sensitivity (detection of all the species present in the mock communities), and a higher specificity (low rates of spurious OTU detection) than V3V4. We applied both primers to infective juveniles of the nematode Steinernema glaseri. Both markers showed the bacterial community associated with this nematode to be of low diversity (< 50 OTUs), but only rpoB reliably detected the symbiotic bacterium Xenorhabdus poinarii. Conclusions Our results confirm that different microbiota composition data may be obtained with different markers. We found that rpoB was a highly appropriate marker for assessing the taxonomic structure of mock communities and the nematode microbiota. Further studies on other ecosystems should be considered to evaluate the universal usefulness of the rpoB marker. Our data highlight two crucial elements that should be taken into account to ensure more reliable and accurate descriptions of microbial diversity in high-throughput amplicon sequencing analyses: i) the need to include mock communities as controls; ii) the advantages of using a multigenic approach including at least one housekeeping gene (rpoB is a good candidate) and one variable region of the 16S rRNA gene.


2014 ◽  
Vol 68 (5) ◽  
pp. 657-662 ◽  
Author(s):  
Xinfeng Liu ◽  
Hanlu Fan ◽  
Xiangbin Ding ◽  
Zhongshan Hong ◽  
Yongwei Nei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document