human microbiome project
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 68)

H-INDEX

25
(FIVE YEARS 4)

2022 ◽  
Vol 23 (1) ◽  
pp. 483
Author(s):  
Vasily A. Popkov ◽  
Anastasia A. Zharikova ◽  
Evgenia A. Demchenko ◽  
Nadezda V. Andrianova ◽  
Dmitry B. Zorov ◽  
...  

Uremic retention solutes are the compounds that accumulate in the blood when kidney excretory function is impaired. Some of these compounds are toxic at high concentrations and are usually known as “uremic toxins”. The cumulative detrimental effect of uremic toxins results in numerous health problems and eventually mortality during acute or chronic uremia, especially in end-stage renal disease. More than 100 different solutes increase during uremia; however, the exact origin for most of them is still debatable. There are three main sources for such compounds: exogenous ones are consumed with food, whereas endogenous ones are produced by the host metabolism or by symbiotic microbiota metabolism. In this article, we identify uremic retention solutes presumably of gut microbiota origin. We used database analysis to obtain data on the enzymatic reactions in bacteria and human organisms that potentially yield uremic retention solutes and hence to determine what toxins could be synthesized in bacteria residing in the human gut. We selected biochemical pathways resulting in uremic retention solutes synthesis related to specific bacterial strains and revealed links between toxin concentration in uremia and the proportion of different bacteria species which can synthesize the toxin. The detected bacterial species essential for the synthesis of uremic retention solutes were then verified using the Human Microbiome Project database. Moreover, we defined the relative abundance of human toxin-generating enzymes as well as the possibility of the synthesis of a particular toxin by the human metabolism. Our study presents a novel bioinformatics approach for the elucidation of the origin of both uremic retention solutes and uremic toxins and for searching for the most likely human microbiome producers of toxins that can be targeted and used for the therapy of adverse consequences of uremia.


Author(s):  
Natasha R.F. Novaes ◽  
Isabel C. M. Fensterseifer ◽  
José L. R. Martins ◽  
Osmar N. Silva

Forensic Science compounds many study areas in context of solving crimes, one of which is the forensic microbiology. Combined with genomic approaches, microbiology has shown strong performance in studies regarding the relationship between microorganisms present on human skin and environment. The Human Microbiome Project (HMP) has contributed significantly to characterization of microbial complexity and their connection to human being. The purpose of this work consists of a historical overview of scientific articles, demonstrating the growth and possibility of using skin microbiome in forensic identification. Studies about use of cutaneous microbiome in human identification, as well its forensic approaches, were looked into for writing of this review. Comparisons among cutaneous microbial communities and manipulated objects have been tested using 16S rRNA, as well as a thorough sequencing of the bacterial genome. From use of ecological measures of distance to genetic markers with nucleotide variants and predictive algorithms, research has shown promising results for advances in field of forensic identification. The development of metagenomic microbial panel markers, named hidSkinPlax for targeted sequencing has been designed and tested with great results. Research results show satisfactory potential in human identification by cutaneous microbiome and the possibility for contributive use in elucidating crimes.


Diagnostics ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 1
Author(s):  
Audrey Gouello ◽  
Catherine Dunyach-Remy ◽  
Christian Siatka ◽  
Jean-Philippe Lavigne

The objective of forensic sciences is to find clues in a crime scene in order to reconstruct the scenario. Classical samples include DNA or fingerprints, but both have inherent limitations and can be uninformative. Another type of sample has emerged recently in the form of the microbiome. Supported by the Human Microbiome Project, the characteristics of the microbial communities provide real potential in forensics. They are highly specific and can be used to differentiate and classify the originating body site of a human biological trace. Skin microbiota is also highly specific and different between individuals, leading to its possibility as an identification tool. By extension, the possibilities of the microbial communities to be deposited on everyday objects has also been explored. Other uses include the determination of the post-mortem interval or the analysis of soil communities. One challenge is that the microbiome changes over time and can be influenced by many environmental and lifestyle factors. This review offers an overview of the main methods and applications to demonstrate the benefit of the microbiome to provide forensically relevant information.


2021 ◽  
Vol 43 (3) ◽  
pp. 2135-2146
Author(s):  
Mahmoud A. Ghannoum ◽  
Thomas S. McCormick ◽  
Mauricio Retuerto ◽  
Gurkan Bebek ◽  
Susan Cousineau ◽  
...  

Gastrointestinal microbiome dysbiosis may result in harmful effects on the host, including those caused by inflammatory bowel diseases (IBD). The novel probiotic BIOHM, consisting of Bifidobacterium breve, Saccharomyces boulardii, Lactobacillus acidophilus, L. rhamnosus, and amylase, was developed to rebalance the bacterial–fungal gut microbiome, with the goal of reducing inflammation and maintaining a healthy gut population. To test the effect of BIOHM on human subjects, we enrolled a cohort of 49 volunteers in collaboration with the Fermentation Festival group (Santa Barbara, CA, USA). The profiles of gut bacterial and fungal communities were assessed via stool samples collected at baseline and following 4 weeks of once-a-day BIOHM consumption. Mycobiome analysis following probiotic consumption revealed an increase in Ascomycota levels in enrolled individuals and a reduction in Zygomycota levels (p value < 0.01). No statistically significant difference in Basidiomycota was detected between pre- and post-BIOHM samples and control abundance profiles (p > 0.05). BIOHM consumption led to a significant reduction in the abundance of Candida genus in tested subjects (p value < 0.013), while the abundance of C. albicans also trended lower than before BIOHM use, albeit not reaching statistical significance. A reduction in the abundance of Firmicutes at the phylum level was observed following BIOHM use, which approached levels reported for control individuals reported in the Human Microbiome Project data. The preliminary results from this clinical study suggest that BIOHM is capable of significantly rebalancing the bacteriome and mycobiome in the gut of healthy individuals, suggesting that further trials examining the utility of the BIOHM probiotic in individuals with gastrointestinal symptoms, where dysbiosis is considered a source driving pathogenesis, are warranted.


2021 ◽  
Vol 48 (4) ◽  
pp. 43-49
Author(s):  
D. Nikolova

Abstract Recent advances in molecular genetics and the invention of new technologies led to a development in our knowledge about human microbiota, specifically bacterial one. The microbiota plays a fundamental role in the immunologic, hormonal and metabolic homeostasis of the host. After the initiation of the Human Microbiome Project, it became clear that the human microbiota consists of the 10-100 trillion symbiotic microbial cells harbored by each person, primarily bacteria in the gut, but also in other spots as the skin, mouth, nose, and vagina. Despite of the differences in studying bacterial species, decreased bacterial diversity and persistence has been connected with several diverse human diseases primarily diabetes, IBD (inflammatory bowel disease) and others; attempts were made even to explain psychiatric pathology. Several species emerged as dominant and were clearly linked to certain disorders or accepted as biomarkers of others. The current review aims to discuss key issues of our current knowledge about bacteria in human, the difficulties and methods of its analysis, its contribution to human health and responsibility for human diseases.


2021 ◽  
Author(s):  
Lucia Maestre-Carballa ◽  
Manuel Martínez-García ◽  
Vicente Navarro-López

A comprehensive characterization of the human body resistome (sets of antibiotic resistance genes (ARGs)) is yet to be done and paramount for addressing the antibiotic microbial resistance threat. Here, we study the resistome of 771 samples from five major body parts (skin, nares, vagina, gut and oral cavity) of healthy subjects from the Human Microbiome Project and addressed the potential dispersion of ARGs in pristine environments. A total of 28,731 ARGs belonging to 344 different ARG types were found in the HMP proteome dataset (n=9.1x107 proteins analyzed). Our study reveals a distinct resistome profile (ARG type and abundance) between body sites and high inter-individual variability. Nares had the highest ARG load (≈5.4 genes/genome) followed by the oral cavity, while the gut showed one of the highest ARG richness (shared with nares) but the lowest abundance (≈1.3 genes/genome). Fluroquinolone resistance genes were the most abundant in the human body, followed by macrolide-lincosamide-streptogramin (MLS) or tetracycline. Most of the ARGs belonged to common bacterial commensals and multidrug resistance trait was predominant in the nares and vagina. Our data also provide hope, since the spread of common ARG from the human body to pristine environments (n=271 samples; 77 Gb of sequencing data and 2.1x108 proteins analyzed) thus far remains very unlikely (only one case found in an autochthonous bacterium from a pristine environment). These findings broaden our understanding of ARG in the context of the human microbiome and the One-Health Initiative of WHO uniting human host-microbes and environments as a whole.


Heart ◽  
2021 ◽  
pp. heartjnl-2021-320054
Author(s):  
Shichao Lv ◽  
Yunjiao Wang ◽  
Wanqin Zhang ◽  
Hongcai Shang

Heart failure (HF) is a clinical syndrome in the late stage of cardiovascular disease and is associated with high prevalence, mortality and rehospitalisation rate. The pathophysiological mechanisms of HF have experienced the initial ‘water-sodium retention’ mode to ‘abnormal hemodynamics’ mode, and subsequent to ‘abnormal activation of neuroendocrine’ mode, which has extensively promoted the reform of HF treatment and updated the treatment concept. Since the Human Microbiome Project commencement, the study on intestinal microecology has swiftly developed, providing a new direction to reveal the occurrence of diseases and the mechanisms behind drug effects. Intestinal microecology comprises the gastrointestinal lumen, epithelial secretion, food entering the intestine, intestinal flora and metabolites. Choline and L-carnitine in the diet are metabolised to trimethylamine (TMA) by the intestinal micro-organisms, with TMA being absorbed into the blood. TMA then enters the liver through the portal vein circulation and is oxidised to trimethylamine oxide (TMAO) by the hepatic flavin-containing mono-oxygenase (FMO) family, especially FMO3. The circulating TMAO levels are associated with adverse outcomes in HF (mortality and readmission), and lower TMAO levels indicate better prognosis. As HF progresses, the concentration of TMAO in patients gradually increases. Whether the circulating TMAO level can be decreased by intervening with the intestinal microflora or relevant enzymes, thereby affecting the prognosis of patients with HF, has become a research hotspot. Therefore, based on the HF intestinal hypothesis, exploring the treatment strategy for HF targeting the TMAO metabolite of the intestinal flora may update the treatment concept in HF and improve its therapeutic effect.


Author(s):  
Antoine Bodein ◽  
Marie-Pier Scott-Boyer ◽  
Olivier Perin ◽  
Kim-Anh Lê Cao ◽  
Arnaud Droit

Abstract Motivation Multi-omics data integration enables the global analysis of biological systems and discovery of new biological insights. Multi-omics experimental designs have been further extended with a longitudinal dimension to study dynamic relationships between molecules. However, methods that integrate longitudinal multi-omics data are still in their infancy. Results We introduce the R package timeOmics, a generic analytical framework for the integration of longitudinal multi-omics data. The framework includes pre-processing, modeling and clustering to identify molecular features strongly associated with time. We illustrate this framework in a case study to detect seasonal patterns of mRNA, metabolites, gut taxa and clinical variables in patients with diabetes mellitus from the integrative Human Microbiome Project. Availabilityand implementation timeOmics is available on Bioconductor and github.com/abodein/timeOmics. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Author(s):  
Utpal Bakshi ◽  
Vinod K Gupta ◽  
Aileen R Lee ◽  
John M Davis ◽  
Sriram Chandrasekaran ◽  
...  

Biosynthetic gene clusters (BGCs) in microbial genomes encode for the production of bioactive secondary metabolites (SMs). Given the well-recognized importance of SMs in microbe-microbe and microbe-host interactions, the large-scale identification of BGCs from microbial metagenomes could offer novel functional insights into complex chemical ecology. Despite recent progress, currently available tools for predicting BGCs from shotgun metagenomes have several limitations, including the need for computationally demanding read-assembly and prediction of a narrow breadth of BGC classes. To overcome these limitations, we developed TaxiBGC (Taxonomy-guided Identification of Biosynthetic Gene Clusters), a computational pipeline for identifying experimentally verified BGCs in shotgun metagenomes by first pinpointing the microbial species likely to produce them. We show that our species-centric approach was able to identify BGCs in simulated metagenomes more accurately than by solely detecting BGC genes. By applying TaxiBGC on 5,423 metagenomes from the Human Microbiome Project and various case-control studies, we identified distinct BGC signatures of major human body sites and candidate stool-borne biomarkers for multiple diseases, including inflammatory bowel disease, colorectal cancer, and psychiatric disorders. In all, TaxiBGC demonstrates a significant advantage over existing techniques for systematically characterizing BGCs and inferring their SMs from microbiome data.


2021 ◽  
Vol 96 (4) ◽  
pp. 312-317
Author(s):  
Moonki Hong ◽  
Minkyu Jung

Immune checkpoint inhibitors (ICIs) have achieved promising clinical results in cancer treatment over the past decade. However, the efficacy of ICIs is less than 30% in most tumor types, and studies are underway to identify the predictive factors responsive to ICIs. More than 1,000 species of microorganisms live in the human body, and the second human genome project, The Human Microbiome Project, has been conducted to understand human diseases through interactions with microbes. As the microbiome project has progressed, many studies have reported on the association between microorganisms and human diseases, including preclinical and clinical studies on the relationship between ICIs and the microbiome. Therefore, in this manuscript, the relationship between the microbiome and cancer, especially the effectiveness of ICIs, is reviewed.


Sign in / Sign up

Export Citation Format

Share Document