Aerosol transmission of foot-and-mouth disease virus Asia-1 under experimental conditions

2016 ◽  
Vol 189 ◽  
pp. 39-45 ◽  
Author(s):  
C. Colenutt ◽  
J.L. Gonzales ◽  
D.J. Paton ◽  
J. Gloster ◽  
N. Nelson ◽  
...  
2002 ◽  
Vol 128 (2) ◽  
pp. 301-312 ◽  
Author(s):  
S. ALEXANDERSEN ◽  
I. BROTHERHOOD ◽  
A. I. DONALDSON

Foot-and-mouth disease virus (FMDV) can spread by a variety of mechanisms, including, under certain circumstances, by the wind. Simulation models have been developed to predict the risk of airborne spread of FMDV and have played an important part in decision making during emergencies. The minimal infectious dose of FMDV for different species by inhalation is an important determinant of airborne spread. Whereas the doses for cattle and sheep have been quantified, those for pigs are not known. The objective of the study was to obtain that data in order to enhance the capability of simulation models. Under experimental conditions, forty pigs were exposed individually to naturally generated aerosols of FMDV, strain O1 Lausanne. The results indicated that doses under 100 TCID50 failed to infect pigs but doses of approximately 300 TCID50 caused short-term sub-clinical infection. The calculations suggested that a dose of more than 800 TCID50 is required to cause infection and typical disease.


Author(s):  
S. S. Breese ◽  
H. L. Bachrach

Models for the structure of foot-and-mouth disease virus (FMDV) have been proposed from chemical and physical measurements (Brown, et al., 1970; Talbot and Brown, 1972; Strohmaier and Adam, 1976) and from rotational image-enhancement electron microscopy (Breese, et al., 1965). In this report we examine the surface structure of FMDV particles by high resolution electron microscopy and compare it with that of particles in which the outermost capsid protein VP3 (ca. 30, 000 daltons) has been split into smaller segments, two of which VP3a and VP3b have molecular weights of about 15, 000 daltons (Bachrach, et al., 1975).Highly purified and concentrated type A12, strain 119 FMDV (5 mg/ml) was prepared as previously described (Bachrach, et al., 1964) and stored at 4°C in 0. 2 M KC1-0. 5 M potassium phosphate buffer at pH 7. 5. For electron microscopy, 1. 0 ml samples of purified virus and trypsin-treated virus were dialyzed at 4°C against 0. 2 M NH4OAC at pH 7. 3, deposited onto carbonized formvar-coated copper screens and stained with phosphotungstic acid, pH 7. 3.


Sign in / Sign up

Export Citation Format

Share Document