scholarly journals Characterization of a novel cathepsin L-like protease from Taenia solium metacestodes for the immunodiagnosis of porcine cysticercosis

2019 ◽  
Vol 267 ◽  
pp. 9-16 ◽  
Author(s):  
Nancy León-Janampa ◽  
Ruddy Liendo ◽  
Robert H. Gilman ◽  
Carlos Padilla ◽  
Hector H. García ◽  
...  
Parasitology ◽  
1998 ◽  
Vol 117 (6) ◽  
pp. 579-588 ◽  
Author(s):  
D. RODRÍGUEZ-CONTRERAS ◽  
P. J. SKELLY ◽  
A. LANDA ◽  
C. B. SHOEMAKER ◽  
J. P. LACLETTE

Tapeworms absorb and consume large quantities of glucose through their syncytial tegument, storing the excess as glycogen. Although some studies on the metabolism of glucose in several tapeworms are available, the proteins that mediate its uptake and distribution in their tissue have not been identified. We describe the isolation and characterization of cDNA clones encoding 2 facilitated diffusion glucose transporters (TGTP1 and TGTP2) from Taenia solium, the causal agent of human and porcine cysticercosis. Radio-isotope labelled hexose uptake mediated by TGTP1 expressed in Xenopus oocytes is inhibited by the natural stereoisomers d-glucose and d-mannose but not by l-glucose. Transport by TGTP1 is sensitive to classical inhibitors of facilitated diffusion such as phloretin and cytochalasin B, and insensitive to ouabain. TGTP2 did not function in Xenopus oocytes. Localization studies using specific anti-TGTP1 and anti-TGTP2 antibodies show that TGTP1 is abundant in a number of structures underlying the tegument in adult parasites and larvae, whereas TGTP2 appears to be localized only on the tegumentary surface of the larvae and is not detected in adults.


2006 ◽  
Vol 141 (3-4) ◽  
pp. 251-259 ◽  
Author(s):  
Ai Hua Li ◽  
Sung-Ung Moon ◽  
Yun-Kyu Park ◽  
Byoung-Kuk Na ◽  
Myung-Gi Hwang ◽  
...  

2020 ◽  
Vol 17 (4) ◽  
pp. 342-351
Author(s):  
Sergio A. Durán-Pérez ◽  
José G. Rendón-Maldonado ◽  
Lucio de Jesús Hernandez-Diaz ◽  
Annete I. Apodaca-Medina ◽  
Maribel Jiménez-Edeza ◽  
...  

Background: The protozoan Giardia duodenalis, which causes giardiasis, is an intestinal parasite that commonly affects humans, mainly pre-school children. Although there are asymptomatic cases, the main clinical features are chronic and acute diarrhea, nausea, abdominal pain, and malabsorption syndrome. Little is currently known about the virulence of the parasite, but some cases of chronic gastrointestinal alterations post-infection have been reported even when the infection was asymptomatic, suggesting that the cathepsin L proteases of the parasite may be involved in the damage at the level of the gastrointestinal mucosa. Objective: The aim of this study was the in silico identification and characterization of extracellular cathepsin L proteases in the proteome of G. duodenalis. Methods: The NP_001903 sequence of cathepsin L protease from Homo sapienswas searched against the Giardia duodenalisproteome. The subcellular localization of Giardia duodenaliscathepsin L proteases was performed in the DeepLoc-1.0 server. The construction of a phylogenetic tree of the extracellular proteins was carried out using the Molecular Evolutionary Genetics Analysis software (MEGA X). The Robetta server was used for the construction of the three-dimensional models. The search for possible inhibitors of the extracellular cathepsin L proteases of Giardia duodenaliswas performed by entering the three-dimensional structures in the FINDSITEcomb drug discovery tool. Results: Based on the amino acid sequence of cathepsin L from Homo sapiens, 8 protein sequences were identified that have in their modular structure the Pept_C1A domain characteristic of cathepsins and two of these proteins (XP_001704423 and XP_001704424) are located extracellularly. Threedimensional models were designed for both extracellular proteins and several inhibitory ligands with a score greater than 0.9 were identified. In vitrostudies are required to corroborate if these two extracellular proteins play a role in the virulence of Giardia duodenalisand to discover ligands that may be useful as therapeutic targets that interfere in the mechanism of pathogenesis generated by the parasite. Conclusion: In silicoanalysis identified two proteins in the Giardia duodenalisprotein repertoire whose characteristics allowed them to be classified as cathepsin L proteases, which may be secreted into the extracellular medium to act as virulence factors. Three-dimensional models of both proteins allowed the identification of inhibitory ligands with a high score. The results suggest that administration of those compounds might be used to block the endopeptidase activity of the extracellular cathepsin L proteases, interfering with the mechanisms of pathogenesis of the protozoan parasite Giardia duodenalis.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Zachary Nsadha ◽  
Chris Rutebarika ◽  
Chrisostom Ayebazibwe ◽  
Bukenya Aloys ◽  
M. Mwanja ◽  
...  

Abstract Background Neurocysticercosis caused by Taenia solium when the parasite lodges in the central nervous system, is an important cause of human seizures and mortality in sub-Saharan Africa. The parasite is prevalent in many regions of Uganda. Pigs are intermediate hosts for T. solium, and we evaluated a T. solium control program in pigs, involving vaccination of pigs with the TSOL18 vaccine and treatment with oxfendazole. Methods The study was conducted in two districts of Eastern Uganda involving the rural village communities of Bukedea (intervention area) and Kumi (control area) during 2016–2017. Seven hundred and thirty-four households were enrolled in the study. Pigs in the intervention area received intramuscular immunizations with TSOL18 (Cysvax™) and an oral medication with 30 mg/kg oxfendazole (Paranthic™) at approximately 3-monthly intervals for 18 months. Porcine cysticercosis was evaluated by post-mortem examination. At the beginning of the study, 111 pigs were examined. In an interim evaluation in the intervention area, 55 pigs were evaluated 12 months after starting the project. At the end of the study approximately 3 months after the final intervention, 55 pigs from the intervention area and 56 pigs from the control area were evaluated. Results The prevalence of porcine cysticercosis for the two sites was 16.2% at the beginning of the study (17.2% in the intervention area and 15.1% in the control area) with no statistically significant difference (P = 0.759) between the two study sites. Among the 110 animals assessed from the intervention site (55 at the interim evaluation and 55 at the final evaluation), no pig with viable T. solium cysts was found. There was a statistically significant difference between the prevalence at baseline (17.2%) and at the end of the study (0%) in the intervention area (P = 0.001) and a statistically significant difference between the intervention (0%) and control areas (5.4%) (P = 0.041) at the end of the study. Conclusions Three-monthly concurrent vaccination of pigs with the TSOL18 vaccine and medication with oxfendazole eliminated T. solium transmission by the animals involved in the study. Application of vaccination with medication in pigs has the potential to reduce transmission of T. solium in Uganda and other endemic countries.


2006 ◽  
Vol 140 (1-2) ◽  
pp. 171-176 ◽  
Author(s):  
Sandra Solano ◽  
Isabel M. Cortés ◽  
Natalia I. Copitin ◽  
Patricia Tato ◽  
José L. Molinari

Author(s):  
Gerald Zirintunda ◽  
Justine Ekou

Poverty, hunger and the need for production of pigs with meagre or zero inputs have made most farmers release their pigs to range freely, thus creating a pig-human cycle that maintains Taenia solium, the pig tapeworm and cause of porcine cysticercosis, in the ecosystem. A preliminary study was designed to establish the prevalence of porcine cysticercosis by postmortem examination of the tongue and carcass of free-range pigs from February to April 2014 in Arapai subcounty, Soroti district, eastern Uganda. The tongue of each pig was extended and examined before deep incisions were made and the cut surfaces were examined. The rest of the carcasses were examined for cysts. Out of 178 pigs examined, 32 were qualitatively positive for porcine cysticercosis, representing a prevalence of 18.0%. This high prevalence represents a marked risk to the communities in the study area of neurocysticercosis, a debilitating parasitic zoonosis. Proper human waste disposal by use of pit latrines, confinement of free-range pigs and treatment with albendazole and oxfendazole are recommended.


2009 ◽  
Vol 32 (3) ◽  
pp. 475-479 ◽  
Author(s):  
Katsuyuki Takahashi ◽  
Takashi Ueno ◽  
Isei Tanida ◽  
Naoko Minematsu-Ikeguchi ◽  
Mitsuo Murata ◽  
...  
Keyword(s):  

2013 ◽  
Vol 112 (10) ◽  
pp. 3569-3578 ◽  
Author(s):  
Yanina Arana ◽  
Manuela Verastegui ◽  
Iskra Tuero ◽  
Louis Grandjean ◽  
Hector H. Garcia ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Sufei Jiang ◽  
Yiwei Xiong ◽  
Wenyi Zhang ◽  
Junpeng Zhu ◽  
Dan Cheng ◽  
...  

Cathepsin L genes, which belonged to cysteine proteases, were a series of multifunctional protease and played important roles in a lot of pathological and physiological processes. In this study, we analyzed the characteristics a cathepsin L (named Mn-CL2) in the female oriental river prawn, Macrobrachium nipponense which was involved in ovary maturation. The Mn-CL2 was1,582 bp in length, including a 978 bp open reading frame that encoded 326 amino acids. The Mn-CL2 was classified into the cathepsin L group by phylogenetic analysis. Real-time PCR (qPCR) analysis indicated that Mn-CL2 was highly expressed in the hepatopancreas and ovaries of female prawns. During the different ovarian stages, Mn-CL2 expression in the hepatopancreas and ovaries peaked before ovarian maturation. In situ hybridization studies revealed that Mn-CL2 was localized in the oocyte of the ovary. Injection of Mn-CL2 dsRNA significantly reduced the expression of vitellogenin. Changes in the gonad somatic index also confirmed the inhibitory effects of Mn-CL2 dsRNA on ovary maturation. These results suggest that Mn-CL2 has a key role in promoting ovary maturation.


2016 ◽  
Vol 166 ◽  
pp. 75-82 ◽  
Author(s):  
Shaohua Zhang ◽  
Xuenong Luo ◽  
Aijiang Guo ◽  
Xueliang Zhu ◽  
Xuepeng Cai

Sign in / Sign up

Export Citation Format

Share Document