scholarly journals Recombinant adeno-associated virus expressing the receptor-binding domain of severe acute respiratory syndrome coronavirus S protein elicits neutralizing antibodies: Implication for developing SARS vaccines

Virology ◽  
2006 ◽  
Vol 353 (1) ◽  
pp. 6-16 ◽  
Author(s):  
Lanying Du ◽  
Yuxian He ◽  
Yijia Wang ◽  
Haojie Zhang ◽  
Selene Ma ◽  
...  
2020 ◽  
Vol 6 (45) ◽  
pp. eabc9999 ◽  
Author(s):  
Yuanmei Zhu ◽  
Danwei Yu ◽  
Yang Han ◽  
Hongxia Yan ◽  
Huihui Chong ◽  
...  

The current coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus genetically close to SARS-CoV. To investigate the effects of previous SARS-CoV infection on the ability to recognize and neutralize SARS-CoV-2, we analyzed 20 convalescent serum samples collected from individuals infected with SARS-CoV during the 2003 SARS outbreak. All patient sera reacted strongly with the S1 subunit and receptor binding domain (RBD) of SARS-CoV; cross-reacted with the S ectodomain, S1, RBD, and S2 proteins of SARS-CoV-2; and neutralized both SARS-CoV and SARS-CoV-2 S protein–driven infections. Analysis of antisera from mice and rabbits immunized with a full-length S and RBD immunogens of SARS-CoV verified cross-reactive neutralization against SARS-CoV-2. A SARS-CoV–derived RBD from palm civets elicited more potent cross-neutralizing responses in immunized animals than the RBD from a human SARS-CoV strain, informing strategies for development of universal vaccines against emerging coronaviruses.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1983
Author(s):  
Irani Alves Ferreira-Bravo ◽  
Jeffrey J. DeStefano

The causative agent of COVID-19, SARS-CoV-2, gains access to cells through interactions of the receptor-binding domain (RBD) on the viral S protein with angiotensin-converting enzyme 2 (ACE2) on the surface of human host cells. Systematic evolution of ligands by exponential enrichment (SELEX) was used to generate aptamers (nucleic acids selected for high binding affinity to a target) to the RBD made from 2ʹ-fluoro-arabinonucleic acid (FANA). The best selected ~79 nucleotide aptamers bound the RBD (Arg319-Phe541) and the larger S1 domain (Val16-Arg685) of the 1272 amino acid S protein with equilibrium dissociation constants (KD,app) of ~10–20 nM, and binding half-life for the RBD, S1 domain, and full trimeric S protein of 53 ± 18, 76 ± 5, and 127 ± 7 min, respectively. Aptamers inhibited the binding of the RBD to ACE2 in an ELISA assay. Inhibition, on a per weight basis, was similar to neutralizing antibodies that were specific for RBD. Aptamers demonstrated high specificity, binding with about 10-fold lower affinity to the related S1 domain from the original SARS virus, which also binds to ACE2. Overall, FANA aptamers show affinities comparable to previous DNA aptamers to RBD and S1 protein and directly block receptor interactions while using an alternative Xeno-nucleic acid (XNA) platform.


2012 ◽  
Vol 11 (12) ◽  
pp. 1405-1413 ◽  
Author(s):  
Shibo Jiang ◽  
Maria Elena Bottazzi ◽  
Lanying Du ◽  
Sara Lustigman ◽  
Chien-Te Kent Tseng ◽  
...  

2009 ◽  
Vol 388 (4) ◽  
pp. 815-823 ◽  
Author(s):  
John E. Pak ◽  
Chetna Sharon ◽  
Malathy Satkunarajah ◽  
Thierry C. Auperin ◽  
Cheryl M. Cameron ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 724
Author(s):  
Paola Cristina Resende ◽  
Tiago Gräf ◽  
Anna Carolina Dias Paixão ◽  
Luciana Appolinario ◽  
Renata Serrano Lopes ◽  
...  

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic in Brazil was dominated by two lineages designated as B.1.1.28 and B.1.1.33. The two SARS-CoV-2 variants harboring mutations at the receptor-binding domain of the Spike (S) protein, designated as lineages P.1 and P.2, evolved from lineage B.1.1.28 and are rapidly spreading in Brazil. Lineage P.1 is considered a Variant of Concern (VOC) because of the presence of multiple mutations in the S protein (including K417T, E484K, N501Y), while lineage P.2 only harbors mutation S:E484K and is considered a Variant of Interest (VOI). On the other hand, epidemiologically relevant B.1.1.33 deriving lineages have not been described so far. Here we report the identification of a new SARS-CoV-2 VOI within lineage B.1.1.33 that also harbors mutation S:E484K and was detected in Brazil between November 2020 and February 2021. This VOI displayed four non-synonymous lineage-defining mutations (NSP3:A1711V, NSP6:F36L, S:E484K, and NS7b:E33A) and was designated as lineage N.9. The VOI N.9 probably emerged in August 2020 and has spread across different Brazilian states from the Southeast, South, North, and Northeast regions.


2021 ◽  
Author(s):  
Takuma Hayashi ◽  
Nobuo Yaegashi ◽  
Ikuo Konishi

AbstractBackgroundInfection with receptor binding domain (RBD) mutant (Y453F) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from farmed minks is known to widely spread among humans.MethodsWe investigated the characteristics of SARS-CoV-2 RBD Y453F mutant using three- dimensional structural analysis. We investigated the effect of the RBD Y453F mutant of SARS-CoV- 2 on neutralizing antibodies in serum derived from Corona virus Disease 2019 (COVID-19) positive patients.ResultsOur studies suggest that virus variants with RBD Y453F mutation partially escaped detection by four neutralizing monoclonal antibodies and neutralizing antibodies in serum.ConclusionsConsequently, raising a concern that infection of SARS-CoV-2 mutants that cause serious symptoms in humans may spread globally.


Author(s):  
Amanda Haymond ◽  
Abdulla A Damluji ◽  
Aarthi Narayanan ◽  
Claudius Mueller ◽  
Alex Reeder ◽  
...  

Abstract A cohort consisting of asymptomatic healthcare workers donated temporal serum samples after infection with severe acute respiratory syndrome coronavirus 2. Analysis shows that all asymptomatic healthcare workers had neutralizing antibodies, that these antibodies persist for ≥60 days, and that anti-spike receptor-binding domain immunoglobulin G levels were correspondingly durable over the same time period.


2021 ◽  
Author(s):  
David Margulies ◽  
Javeed Ahmad ◽  
Jiansheng Jiang ◽  
Lisa Boyd ◽  
Allison Zeher ◽  
...  

Abstract The worldwide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and emergence of new variants demands understanding the structural basis of the interaction of antibodies with the SARS-CoV-2 receptor-binding domain (RBD). Here we report five X-ray crystal structures of sybodies (synthetic nanobodies) including binary and ternary complexes of Sb16–RBD, Sb45–RBD, Sb14–RBD–Sb68, and Sb45–RBD–Sb68; and Sb16 unliganded. These reveal that Sb14, Sb16, and Sb45 bind the RBD at the ACE2 interface and that the Sb16 interaction is accompanied by a large CDR2 shift. In contrast, Sb68 interacts at the periphery of the interface. We also determined cryo-EM structures of Sb45 bound to spike (S). Superposition of the X-ray structures of sybodies onto the trimeric S protein cryo-EM map indicates some may bind both "up" and "down" configurations, but others may not. Sensitivity of sybody binding to several recently identified RBD mutants is consistent with these structures.


Sign in / Sign up

Export Citation Format

Share Document