scholarly journals Phenotypic properties resulting from directed gene segment reassortment between wild-type A/Sydney/5/97 influenza virus and the live attenuated vaccine strain

Virology ◽  
2007 ◽  
Vol 367 (2) ◽  
pp. 275-287 ◽  
Author(s):  
Christopher L. Parks ◽  
Theresa Latham ◽  
Adriana Cahill ◽  
Robert E. O'Neill ◽  
Christopher J. Passarotti ◽  
...  
2020 ◽  
Vol 94 (8) ◽  
Author(s):  
John T. Manning ◽  
Nadya E. Yun ◽  
Alexey V. Seregin ◽  
Takaaki Koma ◽  
Rachel A. Sattler ◽  
...  

ABSTRACT Argentine hemorrhagic fever is a potentially lethal disease that is caused by Junin virus (JUNV). There are currently around 5 million individuals at risk of infection within regions of endemicity in Argentina. The live attenuated vaccine strain Candid #1 (Can) is approved for use in regions of endemicity and has substantially decreased the number of annual Argentine hemorrhagic fever (AHF) cases. The glycoprotein (GPC) gene is primarily responsible for attenuation of the Can strain, and we have shown that the absence of an N-linked glycosylation motif in the subunit G1 of the glycoprotein complex of Can, which is otherwise present in the wild-type pathogenic JUNV, causes GPC retention in the endoplasmic reticulum (ER). Here, we show that Can GPC aggregates in the ER of infected cells, forming incorrect cross-chain disulfide bonds, which results in impaired GPC processing into G1 and G2. The GPC fails to cleave into its G1 and G2 subunits and is targeted for degradation within lysosomes. Cells infected with the wild-type Romero (Rom) strain do not produce aggregates that are observed in Can infection, and the stress on the ER remains minimal. While the mutation of the N-linked glycosylation motif (T168A) is primarily responsible for the formation of aggregates, other mutations within G1 that occurred earlier in the passage history of the Can strain also contribute to aggregation of the GPC within the ER. IMPORTANCE The development of vaccines and therapeutics to combat viral hemorrhagic fevers remains a top priority within the Implementation Plan of the U.S. Department of Health and Human Services Public Health Emergency Medical Countermeasures Enterprise. The Can strain, derived from the pathogenic XJ strain of JUNV, has been demonstrated to be both safe and protective against AHF. While the vaccine strain is approved for use in regions of endemicity within Argentina, the mechanisms of Can attenuation have not been elucidated. A better understanding of the viral genetic determinants of attenuation will improve our understanding of the mechanisms contributing to disease pathogenesis and provide critical information for the rational design of live attenuated vaccine candidates for other viral hemorrhagic fevers.


2009 ◽  
Vol 83 (11) ◽  
pp. 5947-5950 ◽  
Author(s):  
Shinji Watanabe ◽  
Tokiko Watanabe ◽  
Yoshihiro Kawaoka

ABSTRACT Mutant influenza virus that lacks the transmembrane and cytoplasmic tail domains of M2 (M2 knockout [M2KO]) is attenuated in both cell culture and mice. Here, we examined the potency of M2KO influenza virus as a live attenuated influenza vaccine. M2KO virus grew as efficiently as the wild-type virus in cells stably expressing the wild-type M2, indicating the feasibility of efficient vaccine production. Mice intranasally vaccinated with M2KO virus developed protective immune responses and survived a lethal challenge with the wild-type virus, suggesting that the M2KO virus has potential as a live attenuated vaccine.


Vaccines ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 47 ◽  
Author(s):  
Raffael Nachbagauer ◽  
Florian Krammer ◽  
Randy Albrecht

Influenza viruses cause severe diseases and mortality in humans on an annual basis. The current influenza virus vaccines can confer protection when they are well-matched with the circulating strains. However, due to constant changes of the virus surface glycoproteins, the vaccine efficacy can drop substantially in some seasons. In addition, the current seasonal influenza virus vaccines do not protect from avian influenza viruses of human pandemic potential. Novel influenza virus vaccines that aim to elicit antibodies against conserved epitopes like the hemagglutinin stalk could not only reduce the burden of drifted seasonal viruses but potentially also protect humans from infection with zoonotic and emerging pandemic influenza viruses. In this paper, we generated influenza virus vaccine constructs that express chimeric hemagglutinins consisting of exotic, avian head domains and a consistent stalk domain of a seasonal virus. Using such viruses in a sequential immunization regimen can redirect the immune response towards conserved epitopes. In this study, male ferrets received a live-attenuated vaccine virus based on the A/Ann Arbor/6/60 strain expressing a chimeric H8/1 (cH8/1) hemagglutinin, which was followed by a heterologous booster vaccination with a cH5/1N1 formalin inactivated non-adjuvanted whole virus. This group was compared to a second group that received a cH8/1N1 inactivated vaccine followed by a cH5/1N1 inactivated vaccine. Both groups showed a reduction in viral titers in the upper respiratory tract after the A(H1N1)pdm09 virus challenge. Animals that received the live-attenuated vaccine had low or undetectable titers in the lower respiratory tract. The results support the further development of chimeric hemagglutinin-based vaccination strategies. The outcome of this study confirms and corroborates findings from female ferrets primed with a A/Leningrad/134/17/57-based live attenuated cH8/1N1 vaccine followed by vaccination with an AS03-adjuvanted cH5/1N1 split virus vaccine 10.


PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0118934 ◽  
Author(s):  
John M. Ngunjiri ◽  
Ahmed Ali ◽  
Prosper Boyaka ◽  
Philip I. Marcus ◽  
Chang-Won Lee

2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Tasneem Anthony ◽  
Antoinette van Schalkwyk ◽  
Marco Romito ◽  
Lieza Odendaal ◽  
Sarah Jane Clift ◽  
...  

2018 ◽  
Vol 15 (6) ◽  
pp. 1427-1435 ◽  
Author(s):  
Fabien J. Fuche ◽  
Jennifer A. Jones ◽  
Girish Ramachandran ◽  
Ellen E. Higginson ◽  
Raphael Simon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document