argentine hemorrhagic fever
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 10)

H-INDEX

27
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Vahid Rajabali Zadeh ◽  
Shuzo Urata ◽  
Tosin Oladipo Afowowe ◽  
Jiro Yasuda

Favipiravir is a nucleoside analogue that inhibits the replication and transcription of a broad spectrum of RNA viruses, including pathogenic arenaviruses. In this study, we isolated a favipiravir-resistant mutant of Junin virus (JUNV), which is the causative agent of Argentine hemorrhagic fever, and analyzed the antiviral mechanism of favipiravir against JUNV. Two amino acid substitutions, N462D in the RNA-dependent RNA polymerase (RdRp) and A168T in the glycoprotein precursor GPC, were identified in the mutant. GPC-A168T substitution enhanced the efficiency of JUNV internalization, which explains the robust replication kinetics of the mutant in the virus growth analysis. Although RdRp-N462D substitution did not affect polymerase activity levels in a minigenome system, comparisons of RdRp error frequencies showed that the virus with RdRp-D462 possessed a significantly higher fidelity. We also provided experimental evidence for the first time that favipiravir inhibited JUNV through the accumulation of transition mutations, confirming its role as a purine analogue against arenaviruses. Moreover, we showed that treatment with a combination of favipiravir and either ribavirin or remdesivir inhibited JUNV replication in a synergistic manner, blocking the generation of the drug-resistant mutant. Our findings provide new insights for the clinical management and treatment of Argentine hemorrhagic fever.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Huiling Kang ◽  
Jingyuan Cong ◽  
Chenlong Wang ◽  
Wenxin Ji ◽  
Yuhui Xin ◽  
...  

AbstractJunin virus (JUNV) causes Argentine hemorrhagic fever, a debilitating human disease of high mortality rates and a great risk to public health worldwide. Studying the L protein that replicates and transcribes the genome of JUNV, and its regulator Z protein should provide critical clues to identify therapeutic targets for disrupting the life cycle of JUNV. Here we report the 3.54 Å cryo-EM structure of the JUNV L protein complexed with regulator Z protein. JUNV L structure reveals a conserved architecture containing signature motifs found in other L proteins. Structural analysis shows that L protein is regulated by binding of Z protein at the RNA product exit site. Based on these findings, we propose a model for the role of Z protein as a switch to turn on/off the viral RNA synthesis via its interaction with L protein. Our work unveils the mechanism of JUNV transcription, replication and regulation, which provides a framework for the rational design of antivirals for combating viral infections.


2021 ◽  
Vol 118 (11) ◽  
pp. e2023332118
Author(s):  
Larry Zeitlin ◽  
Robert W. Cross ◽  
Joan B. Geisbert ◽  
Viktoriya Borisevich ◽  
Krystle N. Agans ◽  
...  

The COVID-19 pandemic has reemphasized the need to identify safe and scalable therapeutics to slow or reverse symptoms of disease caused by newly emerging and reemerging viral pathogens. Recent clinical successes of monoclonal antibodies (mAbs) in therapy for viral infections demonstrate that mAbs offer a solution for these emerging biothreats. We have explored this with respect to Junin virus (JUNV), an arenavirus classified as a category A high-priority agent and the causative agent of Argentine hemorrhagic fever (AHF). There are currently no Food and Drug Administration-approved drugs available for preventing or treating AHF, although immune plasma from convalescent patients is used routinely to treat active infections. However, immune plasma is severely limited in quantity, highly variable in quality, and poses significant safety risks including the transmission of transfusion-borne diseases. mAbs offer a highly specific and consistently potent alternative to immune plasma that can be manufactured at large scale. We previously described a chimeric mAb, cJ199, that provided protection in a guinea pig model of AHF. To adapt this mAb to a format more suitable for clinical use, we humanized the mAb (hu199) and evaluated it in a cynomolgus monkey model of AHF with two JUNV isolates, Romero and Espindola. While untreated control animals experienced 100% lethality, all animals treated with hu199 at 6 d postinoculation (dpi) survived, and 50% of animals treated at 8 dpi survived. mAbs like hu199 may offer a safer, scalable, and more reproducible alternative to immune plasma for rare viral diseases that have epidemic potential.


2020 ◽  
Author(s):  
Ricardo Valentini ◽  
Juan Dupont ◽  
Jose Fernandez ◽  
Jorge Solimano ◽  
Fernando Palizas ◽  
...  

At the beginning of the COVID-19 pandemic, there was high mortality and a lack of effective treatment for critically ill patients. Build on the experience in argentine hemorrhagic fever with convalescent plasma, we incorporated 90 patients into a multicenter study, and 87 were evaluable. We collected 397 donations from 278 convalescent donors. Patients received plasma with an IgG concentration of 0.7-0.8 (measured by Abbott chemiluminescence) for every 10 kg of body weight. Survival during the first 28 days was the primary objective. 77% were male, age 54 (+/-15.6 y/o (range 27-85); body mass index 29.7 +/-; 4,4; hypertension 39% and diabetes 20%; 19.5% had an immunosuppression condition; 23% were healthcare workers. Plasma was administered to 55 patients (63%) on spontaneous breathing with oxygen supplementation (mainly oxygen mask with reservoir bag in 80%), and 32 patients (37%) were infused on mechanical ventilation. The 28-day survival rate was 80%, with 91% in patients infused on spontaneous breathing and 63% in those infused on mechanical ventilation (p = 0.0002). There was a significant improvement in the WHO pneumonia clinical scale at 7 and 14 days, and in PaO2 / FiO2, ferritin and LDH, in the week post-infusion. We observed an episode of circulatory volume overload and a febrile reaction, both mild. Convalescent plasma infusions are feasible, safe, and potentially effective, especially before requiring mechanical ventilation, and are an attractive clinical option for treating severe forms of COVID-19 until other effective therapies become available.


2020 ◽  
Vol 94 (19) ◽  
Author(s):  
Chengjin Ye ◽  
Juan Carlos de la Torre ◽  
Luis Martínez-Sobrido

ABSTRACT The New World mammarenavirus Tacaribe virus (TCRV) has been isolated from fruit bats, mosquitoes, and ticks, whereas all other known New World mammarenaviruses are maintained in rodents. TCRV has not been linked to human disease, but it has been shown to protect against Argentine hemorrhagic fever-like disease in marmosets infected with the New World mammarenavirus Junín virus (JUNV), indicating the potential of TCRV as a live-attenuated vaccine for the treatment of Argentine hemorrhagic fever. Implementation of TCRV as a live-attenuated vaccine or a vaccine vector would be facilitated by the establishment of reverse genetics systems for the genetic manipulation of the TCRV genome. In this study, we developed, for the first time, reverse genetics approaches for the generation of recombinant TCRV (rTCRV). We successfully rescued a wild-type (WT) rTCRV (a trisegmented form of TCRV expressing two reporter genes [r3TCRV]) and a bisegmented TCRV expressing a single reporter gene from a bicistronic viral mRNA (rTCRV/GFP). These reverse genetics approaches represent an excellent tool to investigate the biology of TCRV and to explore its potential use as a live-attenuated vaccine or a vaccine vector for the treatment of other viral infections. Notably, we identified a 39-nucleotide (nt) deletion (Δ39) in the noncoding intergenic region (IGR) of the viral large (L) segment that is required for optimal virus multiplication. Accordingly, an rTCRV containing this 39-nt deletion in the L-IGR (rTCRV/Δ39) exhibited decreased viral fitness in cultured cells, suggesting the feasibility of using this deletion in the L-IGR as an approach to attenuate TCRV, and potentially other mammarenaviruses, for their implementation as live-attenuated vaccines or vaccine vectors. IMPORTANCE To date, no Food and Drug Administration (FDA)-approved vaccines are available to combat hemorrhagic fever caused by mammarenavirus infections in humans. Treatment of mammarenavirus infections is limited to the off-label use of ribavirin, which is partially effective and associated with significant side effects. Tacaribe virus (TCRV), the prototype member of the New World mammarenaviruses, is nonpathogenic in humans but able to provide protection against Junín virus (JUNV), the causative agent of Argentine hemorrhagic fever, demonstrating the feasibility of using TCRV as a live-attenuated vaccine vector for the treatment of JUNV and potentially other viral infections. Here, we describe for the first time the feasibility of generating recombinant TCRV (rTCRV) using reverse genetics approaches, which paves the way to study the biology of TCRV and also its potential use as a live-attenuated vaccine or a vaccine vector for the treatment of mammarenavirus and/or other viral infections in humans.


2020 ◽  
Vol 26 (7) ◽  
pp. 1562-1566 ◽  
Author(s):  
Ioannis Veliziotis ◽  
Alain Roman ◽  
Delphine Martiny ◽  
Gerlind Schuldt ◽  
Marc Claus ◽  
...  

2020 ◽  
Vol 94 (8) ◽  
Author(s):  
John T. Manning ◽  
Nadya E. Yun ◽  
Alexey V. Seregin ◽  
Takaaki Koma ◽  
Rachel A. Sattler ◽  
...  

ABSTRACT Argentine hemorrhagic fever is a potentially lethal disease that is caused by Junin virus (JUNV). There are currently around 5 million individuals at risk of infection within regions of endemicity in Argentina. The live attenuated vaccine strain Candid #1 (Can) is approved for use in regions of endemicity and has substantially decreased the number of annual Argentine hemorrhagic fever (AHF) cases. The glycoprotein (GPC) gene is primarily responsible for attenuation of the Can strain, and we have shown that the absence of an N-linked glycosylation motif in the subunit G1 of the glycoprotein complex of Can, which is otherwise present in the wild-type pathogenic JUNV, causes GPC retention in the endoplasmic reticulum (ER). Here, we show that Can GPC aggregates in the ER of infected cells, forming incorrect cross-chain disulfide bonds, which results in impaired GPC processing into G1 and G2. The GPC fails to cleave into its G1 and G2 subunits and is targeted for degradation within lysosomes. Cells infected with the wild-type Romero (Rom) strain do not produce aggregates that are observed in Can infection, and the stress on the ER remains minimal. While the mutation of the N-linked glycosylation motif (T168A) is primarily responsible for the formation of aggregates, other mutations within G1 that occurred earlier in the passage history of the Can strain also contribute to aggregation of the GPC within the ER. IMPORTANCE The development of vaccines and therapeutics to combat viral hemorrhagic fevers remains a top priority within the Implementation Plan of the U.S. Department of Health and Human Services Public Health Emergency Medical Countermeasures Enterprise. The Can strain, derived from the pathogenic XJ strain of JUNV, has been demonstrated to be both safe and protective against AHF. While the vaccine strain is approved for use in regions of endemicity within Argentina, the mechanisms of Can attenuation have not been elucidated. A better understanding of the viral genetic determinants of attenuation will improve our understanding of the mechanisms contributing to disease pathogenesis and provide critical information for the rational design of live attenuated vaccine candidates for other viral hemorrhagic fevers.


2019 ◽  
Vol 93 (15) ◽  
Author(s):  
Julieta S. Roldán ◽  
Nélida A. Candurra ◽  
María I. Colombo ◽  
Laura R. Delgui

ABSTRACTJunín virus (JUNV), a member of the familyArenaviridae, is the etiological agent of Argentine hemorrhagic fever (AHF), a potentially deadly endemic-epidemic disease affecting the population of the most fertile farming land of Argentina. Autophagy is a degradative process with a crucial antiviral role; however, several viruses subvert the pathway to their benefit. We determined the role of autophagy in JUNV-infected cells by analyzing LC3, a cytoplasmic protein (LC3-I) that becomes vesicle membrane associated (LC3-II) upon induction of autophagy. Cells overexpressing enhanced green fluorescent protein (EGFP)-LC3 and infected with JUNV showed an increased number of LC3 punctate structures, similar to those obtained after starvation or bafilomycin A1 treatment, which leads to autophagosome induction or accumulation, respectively. We also monitored the conversion of LC3-I to LC3-II, observing LC3-II levels in JUNV-infected cells similar to those observed in starved cells. Additionally, we kinetically studied the number of LC3 dots after JUNV infection and found that the virus activated the pathway as early as 2 h postinfection (p.i.), whereas the UV-inactivated virus did not induce the pathway. Cells subjected to starvation or pretreated with rapamycin, a pharmacological autophagy inductor, enhanced virus yield. Also, we assayed the replication capacity of JUNV in Atg5 knockout or Beclin 1 knockdown cells (both critical components of the autophagic pathway) and found a significant decrease in JUNV replication. Taken together, our results constitute the first study indicating that JUNV infection induces an autophagic response, which is functionally required by the virus for efficient propagation.IMPORTANCEMammalian arenaviruses are zoonotic viruses that cause asymptomatic and persistent infections in their rodent hosts but may produce severe and lethal hemorrhagic fevers in humans. Currently, there are neither effective therapeutic options nor effective vaccines for viral hemorrhagic fevers caused by human-pathogenic arenaviruses, except the vaccine Candid no. 1 against Argentine hemorrhagic fever (AHF), licensed for human use in areas of endemicity in Argentina. Since arenaviruses remain a severe threat to global public health, more in-depth knowledge of their replication mechanisms would improve our ability to fight these viruses. Autophagy is a lysosomal degradative pathway involved in maintaining cellular homeostasis, representing powerful anti-infective machinery. We show, for the first time for a member of the familyArenaviridae, a proviral role of autophagy in JUNV infection, providing new knowledge in the field of host-virus interaction. Therefore, modulation of virus-induced autophagy could be used as a strategy to block arenavirus infections.


Sign in / Sign up

Export Citation Format

Share Document