scholarly journals Intracellular trafficking pathway of BK Virus in human renal proximal tubular epithelial cells

Virology ◽  
2008 ◽  
Vol 371 (2) ◽  
pp. 336-349 ◽  
Author(s):  
Takahito Moriyama ◽  
Andrey Sorokin
2007 ◽  
Vol 81 (16) ◽  
pp. 8552-8562 ◽  
Author(s):  
Takahito Moriyama ◽  
J. Pablo Marquez ◽  
Tetsuro Wakatsuki ◽  
Andrey Sorokin

ABSTRACT In recent years, BK virus (BKV) nephritis after renal transplantation has become a severe problem. The exact mechanisms of BKV cell entry and subsequent intracellular trafficking remain unknown. Since human renal proximal tubular epithelial cells (HRPTEC) represent a main natural target of BKV nephritis, analysis of BKV infection of HRPTEC is necessary to obtain additional insights into BKV biology and to develop novel strategies for the treatment of BKV nephritis. We coincubated HRPTEC with BKV and the cholesterol-depleting agents methyl beta cyclodextrin (MBCD) and nystatin (Nys), drugs inhibiting caveolar endocytosis. The percentage of infected cells (detected by immunofluorescence) and the cellular levels of BKV large T antigen expression (detected by Western blot analysis) were significantly decreased in both MBCD- and Nys-treated HPRTEC compared to the level in HRPTEC incubated with BKV alone. HRPTEC infection by BKV was also tested after small interfering RNA (siRNA)-dependent depletion of either the caveolar structural protein caveolin-1 (Cav-1) or clathrin, the major structural protein of clathrin-coated pits. BKV infection was inhibited in HRPTEC transfected with Cav-1 siRNA but not in HRPTEC transfected with clathrin siRNA. The colocalization of labeled BKV particles with either Cav-1 or clathrin was investigated by using fluorescent microscopy and image cross-correlation spectroscopy. The rate of colocalization of BKV with Cav-1 peaked at 4 h after incubation. Colocalization with clathrin was insignificant at all time points. These results suggest that BKV entered into HRPTEC via caveolae, not clathrin-coated pits, and that BKV is maximally associated with caveolae at 4 h after infection, prior to relocation to a different intracellular compartment.


2001 ◽  
Vol 59 (s78) ◽  
pp. 258-261 ◽  
Author(s):  
Mihaela C. Ignatescu ◽  
Manuela Fodiger ◽  
Josef Kletzmayr ◽  
Christian Bieglmayer ◽  
Walter H. Horl ◽  
...  

2021 ◽  
pp. 1-7
Author(s):  
Zhen Li ◽  
Gang Hou

<b><i>Introduction:</i></b> LincRNA-p21 is predicted to interact with miR-449a, which plays a protective role in cisplatin-induced acute kidney injury (CIA). <b><i>Objective:</i></b> This study aimed to analyze the involvement of lincRNA-p21 in breast cancer patients with CIA. <b><i>Methods:</i></b> Levels of lincRNA-p21 in plasma from CIA, triple negative breast cancer, and control groups were measured by performing RT-qPCR. The potential interaction between lincRNA-p21 and miR-449a was first predicted by RT-qPCR. The relationship between lincRNA-p21 and miR-449a was analyzed by overexpression experiment. <b><i>Results:</i></b> We found that lincRNA-p21 is downregulated in CIA. Dual luciferase activity assay showed that lincRNA-p21 and miR-449a can interact with each other, while overexpression of lincRNA-p21 and miR-449a failed to affect the expression of each other. In human renal proximal tubular epithelial cells (HRPTEpCs), cisplatin led to the upregulated miR-449a but downregulated lincRNA-p21. Interestingly, lincRNA-p21 overexpression led to reduced enhancing effects of miR-449a on the cisplatin-induced apoptosis of HRPTEpCs. <b><i>Conclusion:</i></b> Therefore, lincRNA-p21 is downregulated in CIA and may sponge miR-449a to inhibit cisplatin-induced apoptosis of HRPTEpCs.


2000 ◽  
Vol 279 (4) ◽  
pp. F728-F735 ◽  
Author(s):  
Mingyu Liang ◽  
Anthony J. Croatt ◽  
Karl A. Nath

We examined whether nitric oxide-generating agents influence expression of heme oxygenase-1 (HO-1) in renal proximal tubular epithelial cells, LLC-PK1 cells, and the mechanisms underlying any such effects. In sublytic amounts, the nitric oxide donor sodium nitroprusside induced HO-1 mRNA and protein and HO activity in a dose-dependent and time-dependent fashion; this induction was specific for nitric oxide since the nitric oxide scavenger carboxy-2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide significantly reduced such induction. The induction of HO activity by sodium nitroprusside, or by another nitric oxide donor, spermine NONOate, was markedly reduced by the iron chelator deferoxamine. Two different thiol-containing agents, N-acetylcysteine and dithiothreitol, blunted such induction of HO by nitric oxide. Downstream products of nitric oxide, such as peroxynitrite or cGMP, were not involved in inducing HO. In higher concentrations (millimolar amounts), sodium nitroprusside induced appreciable cytotoxicity as assessed by lactate dehydrogenase (LDH) release and lipid peroxidation, and both of these effects were markedly reduced by deferoxamine. Inhibition of HO did not affect the cytotoxic effects (measured by LDH release) of sodium nitroprusside. We thus provide the novel description of the induction of HO-1 in renal proximal tubular epithelial cells exposed to nitric oxide donors and provide the first demonstration in kidney-derived cells for the involvement of a redox-based mechanism in such expression. We also demonstrate that, in LLC-PK1 cells exposed to nitric oxide donors, chelatable iron is involved in eliciting the HO-1 response observed at lower concentrations of these donors, and in mediating the cytotoxic effects of these donors when present in higher concentrations.


Sign in / Sign up

Export Citation Format

Share Document