scholarly journals Moloney murine leukemia virus decay mediated by retroviral reverse transcriptase degradation of genomic RNA

Virology ◽  
2008 ◽  
Vol 380 (1) ◽  
pp. 91-98 ◽  
Author(s):  
Monica Casali ◽  
Carlo Zambonelli ◽  
Jonathan Goldwasser ◽  
Halong N. Vu ◽  
Martin L. Yarmush
2004 ◽  
Vol 78 (20) ◽  
pp. 10927-10938 ◽  
Author(s):  
Catherine S. Hibbert ◽  
Jane Mirro ◽  
Alan Rein

ABSTRACT Prior work by others has shown that insertion of ψ (i.e., leader) sequences from the Moloney murine leukemia virus (MLV) genome into the 3′ untranslated region of a nonviral mRNA leads to the specific encapsidation of this RNA in MLV particles. We now report that these RNAs are, like genomic RNAs, encapsidated as dimers. These dimers have the same thermostability as MLV genomic RNA dimers; like them, these dimers are more stable if isolated from mature virions than from immature virions. We characterized encapsidated mRNAs containing deletions or truncations of MLV ψ or with ψ sequences from MLV-related acute transforming viruses. The results indicate that the dimeric linkage in genomic RNA can be completely attributed to the ψ region of the genome. While this conclusion agrees with earlier electron microscopic studies on mature MLV dimers, it is the first evidence as to the site of the linkage in immature dimers for any retrovirus. Since the Ψ+ mRNA is not encapsidated as well as genomic RNA, it is only present in a minority of virions. The fact that it is nevertheless dimeric argues strongly that two of these molecules are packaged into particles together. We also found that the kissing loop is unnecessary for this coencapsidation or for the stability of mature dimers but makes a major contribution to the stability of immature dimers. Our results are consistent with the hypothesis that the packaging signal involves a dimeric structure in which the RNAs are joined by intermolecular interactions between GACG loops.


2015 ◽  
Vol 113 ◽  
pp. 44-50 ◽  
Author(s):  
Kosaku Nishimura ◽  
Kanta Yokokawa ◽  
Tetsuro Hisayoshi ◽  
Kosuke Fukatsu ◽  
Ikumi Kuze ◽  
...  

2002 ◽  
Vol 76 (19) ◽  
pp. 9614-9623 ◽  
Author(s):  
Ting Li ◽  
Jiayou Zhang

ABSTRACT Retroviral recombination can occur between two viral RNA molecules (intermolecular) or between two sequences within the same RNA molecule (intramolecular). The rate of retroviral intramolecular recombination is high. Previous studies showed that, after a single round of replication, 50 to 60% of retroviral recombinations occur between two identical sequences within a Moloney murine leukemia virus-based vector. Recombination can occur at any polymerization step within the retroviral replication cycle. Although reverse transcriptase is assumed to contribute to the template switches, previous studies could not distinguish between changes introduced by host RNA polymerase II (Pol II) or by reverse transcriptase. A cell culture system has been established to detect the individual contribution of host RNA Pol II, host DNA polymerase or viral reverse transcriptase, as well as the recombination events taking place during minus-strand DNA synthesis and plus-strand DNA synthesis in a single round of viral intramolecular replication. Studies in this report demonstrate that intramolecular recombination between two identical sequences during transcription by host RNA Pol II is minimal and that most recombinations occur during minus-strand DNA synthesis catalyzed by viral reverse transcriptase.


Sign in / Sign up

Export Citation Format

Share Document