Hepatitis C virus molecular clones and their replication capacity in vivo and in cell culture

2007 ◽  
Vol 127 (2) ◽  
pp. 195-207 ◽  
Author(s):  
Ralf Bartenschlager ◽  
Sandra Sparacio
2014 ◽  
Vol 89 (1) ◽  
pp. 811-823 ◽  
Author(s):  
Yi-Ping Li ◽  
Santseharay Ramirez ◽  
Lotte Mikkelsen ◽  
Jens Bukh

ABSTRACTThe first discovered and sequenced hepatitis C virus (HCV) genome and the firstin vivoinfectious HCV clones originated from the HCV prototype strains HCV-1 and H77, respectively, both widely used in research of this important human pathogen. In the present study, we developed efficient infectious cell culture systems for these genotype 1a strains by using the HCV-1/SF9_A and H77Cin vivoinfectious clones. We initially adapted a genome with the HCV-1 5′UTR-NS5A (where UTR stands for untranslated region) and the JFH1 NS5B-3′UTR (5-5A recombinant), including the genotype 2a-derived mutations F1464L/A1672S/D2979G (LSG), to grow efficiently in Huh7.5 cells, thus identifying the E2 mutation S399F. The combination of LSG/S399F and reported TNcc(1a)-adaptive mutations A1226G/Q1773H/N1927T/Y2981F/F2994S promoted adaptation of the full-length HCV-1 clone. An HCV-1 recombinant with 17 mutations (HCV1cc) replicated efficiently in Huh7.5 cells and produced supernatant infectivity titers of 104.0focus-forming units (FFU)/ml. Eight of these mutations were identified from passaged HCV-1 viruses, and the A970T/I1312V/C2419R/A2919T mutations were essential for infectious particle production. Using CD81-deficient Huh7 cells, we further demonstrated the importance of A970T/I1312V/A2919T or A970T/C2419R/A2919T for virus assembly and that the I1312V/C2419R combination played a major role in virus release. Using a similar approach, we found that NS5B mutation F2994R, identified here from culture-adapted full-length TN viruses and a common NS3 helicase mutation (S1368P) derived from viable H77C and HCV-1 5-5A recombinants, initiated replication and culture adaptation of H77C containing LSG and TNcc(1a)-adaptive mutations. An H77C recombinant harboring 19 mutations (H77Ccc) replicated and spread efficiently after transfection and subsequent infection of naive Huh7.5 cells, reaching titers of 103.5and 104.4FFU/ml, respectively.IMPORTANCEHepatitis C virus (HCV) was discovered in 1989 with the cloning of the prototype strain HCV-1 genome. In 1997, two molecular clones of H77, the other HCV prototype strain, were shown to be infectious in chimpanzees, but notin vitro. HCV research was hampered by a lack of infectious cell culture systems, which became available only in 2005 with the discovery of JFH1 (genotype 2a), a genome that could establish infection in Huh7.5 cells. Recently, we developedin vitroinfectious clones for genotype 1a (TN), 2a (J6), and 2b (J8, DH8, and DH10) strains by identifying key adaptive mutations. Globally, genotype 1 is the most prevalent. Studies using HCV-1 and H77 prototype sequences have generated important knowledge on HCV. Thus, thein vitroinfectious clones developed here for these 1a strains will be of particular value in advancing HCV research. Moreover, our findings open new avenues for the culture adaptation of HCV isolates of different genotypes.


2007 ◽  
Vol 81 (23) ◽  
pp. 13168-13179 ◽  
Author(s):  
Artur Kaul ◽  
Ilka Woerz ◽  
Philip Meuleman ◽  
Geert Leroux-Roels ◽  
Ralf Bartenschlager

ABSTRACT Production of infectious hepatitis C virus in cell culture has become possible because of the unique properties of the JFH1 isolate. However, virus titers are rather low, limiting the utility of this system. Here we describe the generation of cell culture-adapted JFH1 variants yielding higher titers of infectious particles and enhanced spread of infection in cultured cells. Sequence analysis of adapted genomes revealed a complex pattern of mutations that differed in two independent experiments. Adaptive mutations were observed both in the structural and in the nonstructural regions, with the latter having the highest impact on enhancement of virus titers. The major adaptive mutation was identified in NS5A, and it enhanced titers of three intergenotypic chimeras consisting of the structural region of a genotype 1a, 1b, or 3a isolate and the remainder of the JFH1 isolate. The mutation resides at the P3 position of the NS5A-B cleavage site and slows down processing, implying that subtle differences in replication complex formation appear to determine the efficiency of virus formation. Highly adapted JFH1 viruses carrying six mutations established a robust infection in uPA-transgenic SCID mice xenografted with human hepatocytes. However, the mutation in NS5A which enhanced virus titers in cell culture the most had reverted to wild type in nearly half of the viral genomes isolated from these animals at 15 weeks postinoculation. These results argue for some level of impaired fitness of this mutant in vivo.


Virology ◽  
2010 ◽  
Vol 405 (2) ◽  
pp. 361-369 ◽  
Author(s):  
Kako Mishima ◽  
Naoya Sakamoto ◽  
Yuko Sekine-Osajima ◽  
Mina Nakagawa ◽  
Yasuhiro Itsui ◽  
...  

2007 ◽  
Vol 81 (9) ◽  
pp. 4405-4411 ◽  
Author(s):  
Takanobu Kato ◽  
Takuya Matsumura ◽  
Theo Heller ◽  
Satoru Saito ◽  
Ronda K. Sapp ◽  
...  

ABSTRACT A unique hepatitis C virus (HCV) strain JFH-1 has been shown to replicate efficiently in cell culture with production of infectious HCV. We previously developed a DNA expression system containing HCV cDNA flanked by two self-cleaving ribozymes to generate HCV particles in cell culture. In this study, we produced HCV particles of various genotypes, including 1a (H77), 1b (CG1b), and 2a (J6 and JFH-1), in the HCV-ribozyme system. The constructs also contain the secreted alkaline phosphatase gene to control for transfection efficiency and the effects of culture conditions. After transfection into the Huh7-derived cell line Huh7.5.1, continuous HCV replication and secretion were confirmed by the detection of HCV RNA and core antigen in the culture medium. HCV replication levels of strains H77, CG1b, and J6 were comparable, whereas the JFH-1 strain replicates at a substantially higher level than the other strains. To evaluate the infectivity in vitro, the culture medium of JFH-1-transfected cells was inoculated into naive Huh7.5.1 cells. HCV proteins were detected by immunofluorescence 3 days after inoculation. To evaluate the infectivity in vivo, the culture medium from HCV genotype 1b-transfected cells was inoculated into a chimpanzee and caused a typical course of HCV infection. The HCV 1b propagated in vitro and in vivo had sequences identical to those of the HCV genomic cDNA used for cell culture transfection. The development of culture systems for production of various HCV genotypes provides a valuable tool not only to study the replication and pathogenesis of HCV but also to screen for antivirals.


2007 ◽  
Vol 52 (1) ◽  
pp. 110-120 ◽  
Author(s):  
Yi Zhou ◽  
Doug J. Bartels ◽  
Brian L. Hanzelka ◽  
Ute Müh ◽  
Yunyi Wei ◽  
...  

ABSTRACT In patients chronically infected with hepatitis C virus (HCV) strains of genotype 1, rapid and dramatic antiviral activity has been observed with telaprevir (VX-950), a highly selective and potent inhibitor of the HCV NS3-4A serine protease. HCV variants with substitutions in the NS3 protease domain were observed in some patients during telaprevir dosing. In this study, purified protease domain proteins and reconstituted HCV subgenomic replicons were used for phenotypic characterization of many of these substitutions. V36A/M or T54A substitutions conferred less than eightfold resistance to telaprevir. Variants with double substitutions at Val36 plus Thr54 had ∼20-fold resistance to telaprevir, and variants with double substitutions at Val36 plus Arg155 or Ala156 had >40-fold resistance to telaprevir. An X-ray structure of the HCV strain H protease domain containing the V36M substitution in a cocomplex with an NS4A cofactor peptide was solved at a 2.4-Å resolution. Except for the side chain of Met36, the V36M variant structure is identical to that of the wild-type apoenzyme. The in vitro replication capacity of most variants was significantly lower than that of the wild-type replicon in cells, which is consistent with the impaired in vivo fitness estimated from telaprevir-dosed patients. Finally, the sensitivity of these replicon variants to alpha interferon or ribavirin remained unchanged compared to that of the wild-type.


2017 ◽  
Vol 61 (6) ◽  
Author(s):  
Long V. Pham ◽  
Santseharay Ramirez ◽  
Thomas H. R. Carlsen ◽  
Yi-Ping Li ◽  
Judith M. Gottwein ◽  
...  

ABSTRACT Hepatitis C virus (HCV) strains belong to seven genotypes with numerous subtypes that respond differently to antiviral therapies. Genotype 1, and primarily subtype 1b, is the most prevalent genotype worldwide. The development of recombinant HCV infectious cell culture systems for different variants, permitted by the high replication capacity of strain JFH1 (genotype 2a), has advanced efficacy and resistance testing of antivirals. However, efficient infectious JFH1-based cell cultures of subtype 1b are limited and comprise only the 5′ untranslated region (5′UTR)-NS2, NS4A, or NS5A regions. Importantly, it has not been possible to develop efficient 1b infectious systems expressing the NS3/4A protease, an important target of direct-acting antivirals. We developed efficient infectious JFH1-based cultures with genotype 1b core-NS5A sequences of strains DH1, Con1, and J4 by using previously identified HCV cell culture adaptive substitutions A1226G, R1496L, and Q1773H. These viruses spread efficiently in Huh7.5 cells by acquiring additional adaptive substitutions, and final recombinants yielded peak supernatant infectivity titers of 4 to 5 log10 focus-forming units (FFU)/ml. We subsequently succeeded in adapting a JFH1-based 5′UTR-NS5A DH1 recombinant to efficient growth in cell culture. We evaluated the efficacy of clinically relevant NS3/4A protease and NS5A inhibitors against the novel genotype 1b viruses, as well as against previously developed 1a viruses. The inhibitors were efficient against all tested genotype 1 viruses, with NS5A inhibitors showing half-maximal effective concentrations several orders of magnitude lower than NS3/4A protease inhibitors. In summary, the developed HCV genotype 1b culture systems represent valuable tools for assessing the efficacy of various classes of antivirals and for other virological studies requiring genotype 1b infectious viruses.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 211
Author(s):  
Chui-Wa So ◽  
Glenn Randall

Hepatocytes, the major target of hepatitis C virus (HCV), are highly polarized. HCV infection requires extensive trafficking to distinct subcellular domains in the polarized hepatocyte. Polarized cells and three-dimensional organoids are commonly used to study liver functions and differentiation. Researchers have begun adapting these cell culture models that morphologically and physiologically resemble hepatocytes in vivo to study HCV infection. This review summarizes the use of three-dimensional cell culture systems in studies of HCV infection.


Sign in / Sign up

Export Citation Format

Share Document