Identification of immunodominant T-cell epitopes in membrane protein of highly pathogenic porcine reproductive and respiratory syndrome virus

2011 ◽  
Vol 158 (1-2) ◽  
pp. 108-115 ◽  
Author(s):  
Ya-xin Wang ◽  
Yan-jun Zhou ◽  
Guo-xin Li ◽  
Shan-rui Zhang ◽  
Yi-feng Jiang ◽  
...  
2020 ◽  
Vol 101 (11) ◽  
pp. 1191-1201
Author(s):  
Debin Tian ◽  
Sakthivel Subramaniam ◽  
C. Lynn Heffron ◽  
Hassan M. Mahsoub ◽  
Harini Sooryanarain ◽  
...  

Porcine reproductive and respiratory syndrome virus (PRRSV) causes an economically important global swine disease. Here we report the development of subunit PRRSV-2 vaccines by expressing swine leucocyte antigen (SLA) class I and class II allele-specific epitope antigens in a robust adenovirus vector. SLA I-specific CD8 and SLA II-specific CD4 T cell epitopes of PRRSV-2 NADC20 were predicted in silico. Stable murine leukaemia cell lines (RMA-S), which are TAP-deficient and lacking endogenous class I epitope loading, were established to express different SLA I alleles. The binding stability of PRRSV T cell epitope peptides with SLA I alleles expressed on RMA-S cells was characterized. Two PRRSV poly-T cell epitope peptides were designed. NADC20-PP1 included 39 class I epitopes, consisting of 8 top-ranked epitopes specific to each of 5 SLA I alleles, and fused to 5 class II epitopes specific to SLA II alleles. NADC20-PP2, a subset of PP1, included two top-ranked class I epitopes specific to each of the five SLA I alleles. Two vaccine candidates, Ad-NADC20-PP1 and Ad-NADC20-PP2, were constructed by expressing the polytope peptides in a replication-incompetent human adenovirus 5 vector. A vaccination and challenge study in 30 piglets showed that animals vaccinated with the vaccines had numerically lower gross and histopathology lung lesions, and numerically lower PRRSV RNA loads in lung and serum after challenge compared to the controls, although there was no statistical significance. The results suggested that the Ad-NADC20-PP1 and Ad-NADC20-PP2 vaccines provided little or no protection, further highlighting the tremendous challenges faced in developing an effective subunit PRRSV-2 vaccine.


2014 ◽  
Vol 10 (8) ◽  
pp. 480-486 ◽  
Author(s):  
Arifur Rahman Tanu ◽  
◽  
Mohammad Arif Ashraf ◽  
Md Faruk Hossain ◽  
Md Ismail ◽  
...  

Peptides ◽  
1992 ◽  
pp. 697-698
Author(s):  
Pele C. S. Chong ◽  
Gloria Zobrist ◽  
Yan-Ping Yang ◽  
Raafat Fahim ◽  
Charles Sia ◽  
...  

Vaccine ◽  
2008 ◽  
Vol 26 (36) ◽  
pp. 4747-4753 ◽  
Author(s):  
Kapil Vashisht ◽  
Tony L. Goldberg ◽  
Robert J. Husmann ◽  
William Schnitzlein ◽  
Federico A. Zuckermann

2002 ◽  
Vol 70 (7) ◽  
pp. 3336-3343 ◽  
Author(s):  
Anne Sarén ◽  
Steve Pascolo ◽  
Stefan Stevanovic ◽  
Tilman Dumrese ◽  
Mirja Puolakkainen ◽  
...  

ABSTRACT Chlamydia pneumoniae is a common intracellular human pathogen that has been associated with several severe pathological conditions, including coronary heart disease and atherosclerosis. There is no vaccine against C. pneumoniae infection, but CD8+ T cells have been shown to be crucial for protection during experimental infection. However, the effector functions and epitope specificity of the protective CD8+ T cell remain unknown. The aim of this study was to identify C. pneumoniae-derived mouse CD8 epitopes by using a recent epitope prediction method. Of four C. pneumoniae proteins (the major outer membrane protein, outer membrane protein 2, polymorphic outer membrane protein 5, and heat shock protein 60), 53 potential CD8+ T-cell epitopes were predicted by H-2 class I binding algorithms. Nineteen of the 53 peptides were identified as CD8 epitopes by testing for induction of a cytotoxic response after immunization. To test whether the predicted epitopes are naturally processed and presented by C. pneumoniae-infected cells, we generated a panel of seven peptide-specific cytotoxic T lymphocyte lines that were subsequently tested for recognition of C. pneumoniae-infected target cells. By using this strategy, we were able to identify three C. pneumoniae CD8 epitopes that were, indeed, processed and presented on infected cells. Identification of these natural CD8 epitopes provides tools for characterization of CD8+ T-cell function in vivo and generation of epitope-specific prevention strategies.


2020 ◽  
Author(s):  
Yuwei Li ◽  
Mi Mao ◽  
Liteng Yang ◽  
Xizhuo Sun ◽  
Nanshan Zhong ◽  
...  

Abstract The newly identified 2019 novel coronavirus (2019-nCoV) has caused more than 81,400 laboratory-confirmed human infections, including 3261 deaths, posing a serious threat to human health. Currently, however, there is no specific antiviral treatment or vaccine. To identify immunodominant peptides for designing global peptide vaccine for combating the infections caused by 2019-nCoV, the structure and immunogenicity of 2019-nCoV structural protein were analyzed by bioinformatics tools. 33 B-cell epitopes and 39 T-cell epitopes were determined in four structural proteins via different immunoinformatic tools in which include spike protein (22 B-cell epitopes, 25 T-cell epitopes ), nucleocapsid protein (7 B-cell epitopes, 6 T-cell epitopes), membrane protein (2 B-cell epitopes, 7 T-cell epitopes), and envelope protein (2 B-cell epitopes, 1T-cell epitopes), respectively. The proportion of epitope residues in primary sequence was used to determine the antigenicity and immunogenicity of proteins. The envelope protein has the largest antigenicity in which residue coverage of B-cell epitopes is 24%. The membrane protein possesses the largest immunogenicity in which residue coverage of T-cell epitopes is 55.86%. The reason that immune storm was caused by 2019-nCoV maybe that the membrane and envelope protein expressed plentifully in cell infected. Further, studies involving experimental validation of these predicted epitopes is warranted to ensure the potential of B-cells and T-cells stimulation for their effective use as vaccine candidates. These findings provide the basis for starting further studies on the pathogenesis, and optimizing the design of diagnostic, antiviral and vaccination strategies for this emerging infection.


Sign in / Sign up

Export Citation Format

Share Document