scholarly journals Construction and efficacy evaluation of novel swine leukocyte antigen (SLA) class I and class II allele-specific poly-T cell epitope vaccines against porcine reproductive and respiratory syndrome virus

2020 ◽  
Vol 101 (11) ◽  
pp. 1191-1201
Author(s):  
Debin Tian ◽  
Sakthivel Subramaniam ◽  
C. Lynn Heffron ◽  
Hassan M. Mahsoub ◽  
Harini Sooryanarain ◽  
...  

Porcine reproductive and respiratory syndrome virus (PRRSV) causes an economically important global swine disease. Here we report the development of subunit PRRSV-2 vaccines by expressing swine leucocyte antigen (SLA) class I and class II allele-specific epitope antigens in a robust adenovirus vector. SLA I-specific CD8 and SLA II-specific CD4 T cell epitopes of PRRSV-2 NADC20 were predicted in silico. Stable murine leukaemia cell lines (RMA-S), which are TAP-deficient and lacking endogenous class I epitope loading, were established to express different SLA I alleles. The binding stability of PRRSV T cell epitope peptides with SLA I alleles expressed on RMA-S cells was characterized. Two PRRSV poly-T cell epitope peptides were designed. NADC20-PP1 included 39 class I epitopes, consisting of 8 top-ranked epitopes specific to each of 5 SLA I alleles, and fused to 5 class II epitopes specific to SLA II alleles. NADC20-PP2, a subset of PP1, included two top-ranked class I epitopes specific to each of the five SLA I alleles. Two vaccine candidates, Ad-NADC20-PP1 and Ad-NADC20-PP2, were constructed by expressing the polytope peptides in a replication-incompetent human adenovirus 5 vector. A vaccination and challenge study in 30 piglets showed that animals vaccinated with the vaccines had numerically lower gross and histopathology lung lesions, and numerically lower PRRSV RNA loads in lung and serum after challenge compared to the controls, although there was no statistical significance. The results suggested that the Ad-NADC20-PP1 and Ad-NADC20-PP2 vaccines provided little or no protection, further highlighting the tremendous challenges faced in developing an effective subunit PRRSV-2 vaccine.

Author(s):  
Anette Stryhn ◽  
Michael Kongsgaard ◽  
Michael Rasmussen ◽  
Mikkel Nors Harndahl ◽  
Thomas Østerbye ◽  
...  

1.AbstractExamining CD8+ and CD4+ T cell responses after primary Yellow Fever vaccination in a cohort of 210 volunteers, we have identified and tetramer-validated 92 CD8+ and 50 CD4+ T cell epitopes, many inducing strong and prevalent (i.e. immunodominant) T cell responses. Restricted by 40 and 14 HLA-class I and II allotypes, respectively, these responses have wide population coverage and might be of considerable academic, diagnostic and therapeutic interest. The broad coverage of epitopes and HLA overcame the otherwise confounding effects of HLA diversity and non-HLA background providing the first evidence of T cell immunodomination in humans. Also, double-staining of CD4+ T cells with tetramers representing the same HLA-binding core, albeit with different flanking regions, demonstrated an extensive diversification of the specificities of many CD4+ T cell responses. We suggest that this could reduce the risk of pathogen escape, and that multi-tetramer staining is required to reveal the true magnitude and diversity of CD4+ T cell responses. Our T cell epitope discovery approach uses a combination of 1) overlapping peptides representing the entire Yellow Fever virus proteome to search for peptides containing CD4+ and/or CD8+ T cell epitopes, 2) predictors of peptide-HLA binding to suggest epitopes and their restricting HLA allotypes, 3) generation of peptide-HLA tetramers to identify T cell epitopes, and 4) analysis of ex vivo T cell responses to validate the same. This approach is systematic, exhaustive, and can be done in any individual of any HLA haplotype. It is all-inclusive in the sense that it includes all protein antigens and peptide epitopes, and encompasses both CD4+ and CD8+ T cell epitopes. It is efficient and, importantly, reduces the false discovery rate. The unbiased nature of the T cell epitope discovery approach presented here should support the refinement of future peptide-HLA class I and II predictors and tetramer technologies, which eventually should cover all HLA class I and II isotypes. We believe that future investigations of emerging pathogens (e.g. SARS-CoV-2) should include population-wide T cell epitope discovery using blood samples from patients, convalescents and/or long-term survivors, who might all hold important information on T cell epitopes and responses.


2018 ◽  
Vol 56 (01) ◽  
pp. E2-E89
Author(s):  
J Brinkmann ◽  
T Schwarz ◽  
H Kefalakes ◽  
J Schulze zur Wiesch ◽  
A Kraft ◽  
...  

2020 ◽  
Vol 23 (8) ◽  
pp. 788-796
Author(s):  
Praveen K.P. Krishnamoorthy ◽  
Sekar Subasree ◽  
Udhayachandran Arthi ◽  
Mohammad Mobashir ◽  
Chirag Gowda ◽  
...  

Aim and Objective: Nipah virus (NiV) is a zoonotic virus of the paramyxovirus family that sporadically breaks out from livestock and spreads in humans through breathing resulting in an indication of encephalitis syndrome. In the current study, T cell epitopes with the NiV W protein antigens were predicted. Materials and Methods: Modelling of unavailable 3D structure of W protein followed by docking studies of respective Human MHC - class I and MHC - class II alleles predicted was carried out for the highest binding rates. In the computational analysis, epitopes were assessed for immunogenicity, conservation, and toxicity analysis. T – cell-based vaccine development against NiV was screened for eight epitopes of Indian - Asian origin. Results: Two epitopes, SPVIAEHYY and LVNDGLNII, have been screened and selected for further docking study based on toxicity and conservancy analyses. These epitopes showed a significant score of -1.19 kcal/mol and 0.15 kcal/mol with HLA- B*35:03 and HLA- DRB1 * 07:03, respectively by using allele - Class I and Class II from AutoDock. These two peptides predicted by the reverse vaccinology approach are likely to induce immune response mediated by T – cells. Conclusion: Simulation using GROMACS has revealed that LVNDGLNII epitope forms a more stable complex with HLA molecule and will be useful in developing the epitope-based Nipah virus vaccine.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253918
Author(s):  
Jelena Repac ◽  
Marija Mandić ◽  
Tanja Lunić ◽  
Bojan Božić ◽  
Biljana Božić Nedeljković

Autoimmune diseases, often triggered by infection, affect ~5% of the worldwide population. Rheumatoid Arthritis (RA)–a painful condition characterized by the chronic inflammation of joints—comprises up to 20% of known autoimmune pathologies, with the tendency of increasing prevalence. Molecular mimicry is recognized as the leading mechanism underlying infection-mediated autoimmunity, which assumes sequence similarity between microbial and self-peptides driving the activation of autoreactive lymphocytes. T lymphocytes are leading immune cells in the RA-development. Therefore, deeper understanding of the capacity of microorganisms (both pathogens and commensals) to trigger autoreactive T cells is needed, calling for more systematic approaches. In the present study, we address this problem through a comprehensive immunoinformatics analysis of experimentally determined RA-related T cell epitopes against the proteomes of Bacteria, Fungi, and Viruses, to identify the scope of organisms providing homologous antigenic peptide determinants. By this, initial homology screening was complemented with de novo T cell epitope prediction and another round of homology search, to enable: i) the confirmation of homologous microbial peptides as T cell epitopes based on the predicted binding affinity to RA-related HLA polymorphisms; ii) sequence similarity inference for top de novo T cell epitope predictions to the RA-related autoantigens to reveal the robustness of RA-triggering capacity for identified (micro/myco)organisms. Our study reveals a much larger repertoire of candidate RA-triggering organisms, than previously recognized, providing insights into the underestimated role of Fungi in autoimmunity and the possibility of a more direct involvement of bacterial commensals in RA-pathology. Finally, our study pinpoints Endoplasmic reticulum chaperone BiP as the most potent (most likely mimicked) RA-related autoantigen, opening an avenue for identifying the most potent autoantigens in a variety of different autoimmune pathologies, with possible implications in the design of next-generation therapeutics aiming to induce self-tolerance by affecting highly reactive autoantigens.


2019 ◽  
Vol 8 (4) ◽  
pp. e1560919 ◽  
Author(s):  
Catherine Rabu ◽  
Laurie Rangan ◽  
Laetitia Florenceau ◽  
Agnès Fortun ◽  
Maud Charpentier ◽  
...  

1991 ◽  
Vol 174 (2) ◽  
pp. 425-434 ◽  
Author(s):  
K Falk ◽  
O Rötzschke ◽  
K Deres ◽  
J Metzger ◽  
G Jung ◽  
...  

Virus-specific cytotoxic T lymphocytes (CTL) recognize virus-derived peptides presented by major histocompatibility complex (MHC) class I molecules on virus-infected cells. Such peptides have been isolated from infected cells and were compared to synthetic peptides. We found previously the Kd- or Db-restricted natural influenza nucleoprotein peptides to coelute on reversed phase high performance liquid chromatography columns with certain peptidic by-products present in synthetic peptide preparations. Here we show by extensive biochemical and immunological comparison that the natural peptides in all respects behave as the surmised synthetic nonapeptides, and thus, must be identical to them. The absolute amounts of these natural peptides contained in infected cells could be determined to be between 220 and 540 copies by comparing with defined amounts of pure synthetic nonapeptides. The comparison of the natural Kd-restricted peptide with published synthetic peptides known to contain other Kd-restricted CTL epitopes suggested a new MHC allele-specific T cell epitope forecast method, based on the defined length of nine amino acid residues and on critical amino acid residues at the second and the last position.


2018 ◽  
Vol 49 (4) ◽  
pp. 1600-1614 ◽  
Author(s):  
Shudong He ◽  
Jinlong Zhao ◽  
Walid Elfalleh ◽  
Mohamed Jemaà ◽  
Hanju  Sun ◽  
...  

Background/Aims: The incidence of lectin allergic disease is increasing in recent decades, and definitive treatment is still lacking. Identification of B and T-cell epitopes of allergen will be useful in understanding the allergen antibody responses as well as aiding in the development of new diagnostics and therapy regimens for lectin poisoning. In the current study, we mainly addressed these questions. Methods: Three-dimensional structure of the lectin from black turtle bean (Phaseolus vulgaris L.) was modeled using the structural template of Phytohemagglutinin from P. vulgaris (PHA-E, PDB ID: 3wcs.1.A) with high identity. The B and T-cell epitopes were screened and identified by immunoinformatics and subsequently validated by ELISA, lymphocyte proliferation and cytokine profile analyses. Results: Seven potential B-cell epitopes (B1 to B7) were identified by sequence and structure based methods, while three T-cell epitopes (T1 to T3) were identified by the predictions of binding score and inhibitory concentration. The epitope peptides were synthesized. Significant IgE binding capability was found in B-cell epitopes (B2, B5, B6 and B7) and T2 (a cryptic B-cell epitope). T1 and T2 induced significant lymphoproliferation, and the release of IL-4 and IL-5 cytokine confirmed the validity of T-cell epitope prediction. Abundant hydrophobic amino acids were found in B-cell epitope and T-cell epitope regions by amino acid analysis. Positively charged amino acids, such as His residue, might be more favored for B-cell epitope. Conclusion: The present approach can be applied for the identification of epitopes in novel allergen proteins and thus for designing diagnostics and therapies in lectin allergy.


Gene Therapy ◽  
2004 ◽  
Vol 11 (18) ◽  
pp. 1408-1415 ◽  
Author(s):  
J Tang ◽  
M Olive ◽  
K Champagne ◽  
N Flomenberg ◽  
L Eisenlohr ◽  
...  
Keyword(s):  
T Cell ◽  
Class Ii ◽  

2002 ◽  
Vol 70 (2) ◽  
pp. 981-984 ◽  
Author(s):  
Michèl R. Klein ◽  
Abdulrahman S. Hammond ◽  
Steve M. Smith ◽  
Assan Jaye ◽  
Pauline T. Lukey ◽  
...  

ABSTRACT Few human CD8+ T-cell epitopes in mycobacterial antigens have been described to date. Here we have identified a novel HLA-B*35-restricted CD8+ T-cell epitope in Mycobacterium tuberculosis Rv2903c based on a reverse immunogenetics approach. Peptide-specific CD8 T cells were able to kill M. tuberculosis-infected macrophages and produce gamma interferon and tumor necrosis factor alpha.


Sign in / Sign up

Export Citation Format

Share Document