scholarly journals Individual differences in children’s global motion sensitivity correlate with TBSS-based measures of the superior longitudinal fasciculus

2017 ◽  
Vol 141 ◽  
pp. 145-156 ◽  
Author(s):  
Oliver Braddick ◽  
Janette Atkinson ◽  
Natacha Akshoomoff ◽  
Erik Newman ◽  
Lauren B. Curley ◽  
...  
2016 ◽  
Vol 28 (12) ◽  
pp. 1897-1908 ◽  
Author(s):  
Oliver Braddick ◽  
Janette Atkinson ◽  
Erik Newman ◽  
Natacha Akshoomoff ◽  
Joshua M. Kuperman ◽  
...  

Sensitivity to global visual motion has been proposed as a signature of brain development, related to the dorsal rather than ventral cortical stream. Thresholds for global motion have been found to be elevated more than for global static form in many developmental disorders, leading to the idea of “dorsal stream vulnerability.” Here we explore the association of global motion thresholds with individual differences in children's brain development, in a group of typically developing 5- to 12-year-olds. Good performance was associated with a relative increase in parietal lobe surface area, most strongly around the intraparietal sulcus and decrease in occipital area. In line with the involvement of intraparietal sulcus, areas in visuospatial and numerical cognition, we also found that global motion performance was correlated with tests of visuomotor integration and numerical skills. Individual differences in global form detection showed none of these anatomical or cognitive correlations. This suggests that the correlations with motion sensitivity are unlikely to reflect general perceptual or attentional abilities required for both form and motion. We conclude that individual developmental variations in global motion processing are not linked to greater area in the extrastriate visual areas, which initially process such motion, but in the parietal systems that make decisions based on this information. The overlap with visuospatial and numerical abilities may indicate the anatomical substrate of the “dorsal stream vulnerability” proposed as characterizing neurodevelopmental disorders.


2008 ◽  
Vol 25 (5-6) ◽  
pp. 675-684 ◽  
Author(s):  
CYNTHIA HALL-HARO ◽  
LYNNE KIORPES

AbstractWe studied the development of sensitivity to complex motion using plaid patterns. We hypothesized, based on neurophysiological data showing a dearth of pattern direction–selective (PDS) cells in area medial temporal (MT) of infant macaques, that sensitivity to pattern motion would develop later than other forms of global motion sensitivity. We tested 10 macaque monkeys (Macaca nemestrina) ranging in age from 7 weeks to 109–160 weeks (adult). The monkeys discriminated horizontal from vertical pattern motion; sensitivity for one-dimensional (1D) direction discrimination and detection were tested as control tasks. The results show that pattern motion discrimination ability develops relatively late, between 10 and 18 weeks, while performance on the 1D control tasks was excellent at the earliest test ages. Plaid discrimination performance depends on both the speed and spatial scale of the underlying patterns. However, development is not limited by contrast sensitivity. These results support the idea that pattern motion perception depends on a different mechanism than other forms of global motion perception and are consistent with the idea that the representation of PDS neurons in MT may limit the development of complex motion perception.


2021 ◽  
Vol 15 ◽  
Author(s):  
Serena Micheletti ◽  
Fleur Corbett ◽  
Janette Atkinson ◽  
Oliver Braddick ◽  
Paola Mattei ◽  
...  

Dorsal stream cortical networks underpin a cluster of visuomotor, visuospatial, and visual attention functions. Sensitivity to global coherence of motion and static form is considered a signature of visual cortical processing in the dorsal stream (motion) relative to the ventral stream (form). Poorer sensitivity to global motion compared to global static form has been found across a diverse range of neurodevelopmental disorders, suggesting a “dorsal stream vulnerability.” However, previous studies of global coherence sensitivity in Developmental Coordination Disorder (DCD) have shown conflicting findings. We examined two groups totalling 102 children with DCD (age 5–12 years), using the “Ball in the Grass” psychophysical test to compare sensitivity to global motion and global static form. Motor impairment was measured using the Movement-ABC (M-ABC). Global coherence sensitivity was compared with a typically developing control group (N = 69) in the same age range. Children with DCD showed impaired sensitivity to global motion (p = 0.002), but not global form (p = 0.695), compared to controls. Within the DCD group, motor impairment showed a significant linear relationship with global form sensitivity (p < 0.001). There was also a significant quadratic relationship between motor impairment and global motion sensitivity (p = 0.046), where poorer global motion sensitivity was only apparent with greater motor impairment. We suggest that two distinct visually related components, associated with global form and global motion sensitivity, contribute to DCD differentially over the range of severity of the disorder. Possible neural circuitry underlying these relationships is discussed.


Author(s):  
Elizabeth G. Conlon ◽  
Gry Lilleskaret ◽  
Craig M. Wright ◽  
Anne Stuksrud

2011 ◽  
Vol 32 (3) ◽  
pp. 1075-1080 ◽  
Author(s):  
Bart Boets ◽  
Bert De Smedt ◽  
Pol Ghesquière

Author(s):  
Janette Atkinson

Human visual development is a complex dynamic psychological/neurobiological process, being part of the developing systems for cognition, action, and attention. This article reviews current knowledge and methods of study of human visual development in infancy and childhood, in relation to typical early visual brain development, and how it can change in developmental disorders, both acquired (e.g., related to at-risk births) and genetic disorders. The newborn infant starts life with a functioning subcortical visual system which controls newborn orienting to nearby high contrast objects and faces. Although visual cortex may be active from birth, its characteristic stimulus selectivity and control of visual responses is generally seen to emerge around six to twelve weeks after birth. By age six months the infant has adequate acuity and contrast sensitivity in nearby space, and operating cortical mechanisms for discriminating colors, shapes, faces, movement, stereo depth, and distance of objects, as well as the ability to focus and shift attention between objects of interest. This may include both feedforward and feedback pathways between cortical areas and between cortical and subcortical areas. Two cortical streams start to develop and become interlinked, the dorsal stream underpinning motion, spatial perception and actions, and the ventral stream for recognition of objects and faces. The neural systems developing control and planning of actions include those for directed eye movements, reaching and grasping, and the beginnings of locomotion, with these action systems being integrated into the other developing subcortical and cortical visual networks by one year of age. Analysis of global static form (pattern) and global motion processing allows the development of dorsal and ventral streams to be monitored from infancy through childhood. The development of attention, visuomotor control and spatial cognition in the first years show aspects of function related to the developing dorsal stream, and their integration with the ventral stream. The milestones of typical visual development can be used to characterize visual and visuo-cognitive disorders early in life, such as in infants with perinatal brain injuries and those born very prematurely. The concept of “dorsal stream vulnerability” is outlined. It was initially based on deficits in global motion sensitivity relative to static form sensitivity, but can be extended to the planning and execution of visuomotor actions and problems of attention, together with visuospatial and numerical cognition. These problems are found in the phenotype of children with both genetic developmental disorders (e.g., Williams syndrome, autism, fragile-X, and dyslexia), and in acquired developmental disorders related to very preterm birth, or in children with abnormal visual input such as congenital cataract, refractive errors, or amblyopia. However, there are subtle differences in the manifestation of these disorders which may also vary considerably across individuals. Development in these clinical conditions illustrates the early, but limited, plasticity of visual brain mechanisms, and provides a challenge for the future in designing successful intervention and treatment.


2011 ◽  
Vol 23 (9) ◽  
pp. 2135-2146 ◽  
Author(s):  
Martin Vestergaard ◽  
Kathrine Skak Madsen ◽  
William F. C. Baaré ◽  
Arnold Skimminge ◽  
Lisser Rye Ejersbo ◽  
...  

During childhood and adolescence, ongoing white matter maturation in the fronto-parietal cortices and connecting fiber tracts is measurable with diffusion-weighted imaging. Important questions remain, however, about the links between these changes and developing cognitive functions. Spatial working memory (SWM) performance improves significantly throughout the childhood years, and several lines of evidence implicate the left fronto-parietal cortices and connecting fiber tracts in SWM processing. Here we report results from a study of 76 typically developing children, 7 to 13 years of age. We hypothesized that better SWM performance would be associated with increased fractional anisotropy (FA) in a left fronto-parietal network composed of the superior longitudinal fasciculus (SLF), the regional white matter underlying the dorsolateral pFC, and the posterior parietal cortex. As hypothesized, we observed a significant association between higher FA in the left fronto-parietal network and better SWM skills, and the effect was independent of age. This association was mainly accounted for by variability in left SLF FA and remained significant when FA measures from global fiber tracts or right SLF were included in the model. Further, the effect of FA in left SLF appeared to be mediated primarily by decreasing perpendicular diffusivity. Such associations could be related to individual differences among children in the architecture of fronto-parietal connections and/or to differences in the pace of fiber tract development. Further studies are needed to determine the contributions of intrinsic and experiential factors to the development of functionally significant individual differences in fiber tract structure.


Sign in / Sign up

Export Citation Format

Share Document