Thermal decomposition of expanded polystyrene in a pebble bed reactor to get higher liquid fraction yield at low temperatures

2008 ◽  
Vol 28 (11) ◽  
pp. 2140-2145 ◽  
Author(s):  
R.S. Chauhan ◽  
S. Gopinath ◽  
P. Razdan ◽  
C. Delattre ◽  
G.S. Nirmala ◽  
...  
Kerntechnik ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. 643-647 ◽  
Author(s):  
T. Setiadipura ◽  
D. Irwanto ◽  
Zuhair

2013 ◽  
Vol 54 (2) ◽  
pp. 131-138 ◽  
Author(s):  
N. M. Kuznetsov ◽  
Yu. P. Petrov ◽  
S. V. Turetskii

2014 ◽  
Vol 270 ◽  
pp. 295-301 ◽  
Author(s):  
Nan Gui ◽  
Xingtuan Yang ◽  
Jiyuan Tu ◽  
Shengyao Jiang

Author(s):  
Rainer Moormann

The AVR pebble bed reactor (46 MWth) was operated 1967–1988 at coolant outlet temperatures up to 990°C. Also because of a lack of other experience the AVR operation is a basis for future HTRs. This paper deals with insufficiently published unresolved safety problems of AVR and of pebble bed HTRs. The AVR primary circuit is heavily contaminated with dust bound and mobile metallic fission products (Sr-90, Cs-137) which create problems in current dismantling. The evaluation of fission product deposition experiments indicates that the end of life contamination reached several percent of a single core inventory. A re-evaluation of the AVR contamination is performed in order to quantify consequences for future HTRs: The AVR contamination was mainly caused by inadmissible high core temperatures, and not — as presumed in the past — by inadequate fuel quality only. The high AVR core temperatures were detected not earlier than one year before final AVR shut-down, because a pebble bed core cannot be equipped with instruments. The maximum core temperatures were more than 200 K higher than precalculated. Further, azimuthal temperature differences at the active core margin were observed, as unpredictable hot gas currents with temperatures > 1100°C. Despite of remarkable effort these problems are not yet understood. Having the black box character of the AVR core in mind it remains uncertain whether convincing explanations can be found without major experimental R&D. After detection of the inadmissible core temperatures, the AVR hot gas temperatures were strongly reduced for safety reasons. Metallic fission products diffuse in fuel kernel, coatings and graphite and their break through takes place in long term normal operation, if fission product specific temperature limits are exceeded. This is an unresolved weak point of HTRs in contrast to other reactors and is particularly problematic in pebble bed systems with their large dust content. Another disadvantage, responsible for the pronounced AVR contamination, lies in the fact that activity released from fuel elements is distributed in HTRs all over the coolant circuit surfaces and on graphitic dust and accumulates there. Consequences of AVR experience on future reactors are discussed. As long as pebble bed intrinsic reasons for the high AVR temperatures cannot be excluded they have to be conservatively considered in operation and design basis accidents. For an HTR of 400 MWth, 900°C hot gas temperature, modern fuel and 32 fpy the contaminations are expected to approach at least the same order as in AVR end of life. This creates major problems in design basis accidents, for maintenance and dismantling. Application of German dose criteria on advanced pebble bed reactors leads to the conclusion that a pebble bed HTR needs a gas tight containment even if inadmissible high temperatures as observed in AVR are not considered. However, a gas tight containment does not diminish the consequences of the primary circuit contamination on maintenance and dismantling. Thus complementary measures are discussed. A reduction of demands on future reactors (hot gas temperatures, fuel burn-up) is one option; another one is an elaborate R&D program for solution of unresolved problems related to operation and design basis accidents. These problems are listed in the paper.


2013 ◽  
Vol 05 (04) ◽  
pp. 510-516
Author(s):  
Hongbing Liu ◽  
Peng Shen ◽  
Dong Du ◽  
Xin Wang ◽  
Haiquan Zhang

2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
Jingyu Zhang ◽  
Fu Li ◽  
Yuliang Sun

The pebble-bed reactor HTR-PM is being built in China and is planned to be critical in one or two years. At present, one emphasis of engineering design is to determine the fuel management scheme of the initial core and running-in phase. There are many possible schemes, and many factors need to be considered in the process of scheme evaluation and analysis. Based on the experience from the constructed or designed pebble-bed reactors, the fuel enrichment and the ratio of fuel spheres to graphite spheres are important. In this paper, some relevant physical considerations of the initial core and running-in phase of HTR-PM are given. Then a typical scheme of the initial core and running-in phase is proposed and simulated with VSOP code, and some key physical parameters, such as the maximum power per fuel sphere, the maximum fuel temperature, the refueling rate, and the discharge burnup, are calculated. Results of the physical parameters all satisfy the relevant design requirements, which means the proposed scheme is safe and reliable and can provide support for the fuel management of HTR-PM in the future.


2005 ◽  
Vol 178 (3) ◽  
pp. 847-854 ◽  
Author(s):  
M. Carolina Navarro ◽  
Elisa V. Pannunzio-Miner ◽  
Silvina Pagola ◽  
M. Inés Gómez ◽  
Raúl E. Carbonio

The photochemical decomposition of hydrogen sulphide has been investigated at pressures between 8 and 550 mm of mercury and at temperatures between 27 and 650° C, using the narrow cadmium line ( λ 2288) and the broad mercury band (about λ 2550). At room temperature the quantum yield increases with pressure from 1.09 at 30 mm to 1.26 at 200 mm. Above 200 mm pressure there was no further increase in the quantum yield. Temperature had little effect on the quantum yield at λ 2550, but there was a marked increase in the rate of hydrogen production between 500 and 650° C with 2288 Å radiation. This may have been caused by the decomposition of excited hydrosulphide radicals. The results are consistent with a mechanism involving hydrogen atoms and hydrosulphide radicals. The mercury-photosensitized reaction is less efficient than the photochemical decomposition, the quantum yield being only about 0.45. The efficiency increased with temperature and approached unity at high temperatures and pressures. This agrees with the suggestion that a large fraction of the quenching collisions lead to the formation of Hg ( 3 P 0 ) atoms. The thermal decomposition is heterogeneous at low temperatures and becomes homogeneous and of the second order at 650° C. The experimental evidence suggests the bimolecular mechanism 2H 2 S → 2H 2 + S 2 . The activation energies are 25 kcal/mole (heterogeneous) and 50 kcal/mole (homogeneous).


Sign in / Sign up

Export Citation Format

Share Document