Efficiently sintering of MSWI fly ash at a low temperature enhanced by in-situ pressure assistant: Process performance and product characterization

2021 ◽  
Vol 134 ◽  
pp. 21-31
Author(s):  
Xuexue Wang ◽  
Lei Zhang ◽  
Kongyun Zhu ◽  
Changjing Li ◽  
Yulin Zhang ◽  
...  
Catalysts ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 496 ◽  
Author(s):  
Shaoxin Wang ◽  
Ziwei Chen ◽  
Beini He ◽  
Zheng Yan ◽  
Hao Wang ◽  
...  

A series of CeOx catalysts supported by commercial porous cordierite ceramics (CPCC) and synthesized porous cordierite ceramics (SPCC) from fly ash were prepared for selective catalytic reduction of NOx with ammonia (NH3-SCR). A greater than 90% NOx conversion rate was achieved by the SPCC supported catalyst at 250–300 °C when the concentration of loading precursor was 0.6 mol/L (denoted as 0.6Ce/SPCC), which is more advantageous than the CPCC supported ones. The EDS mapping results reveal the existence of evenly distributed impurities on the surface of SPCC, which hence might be able to provide more attachment sites for CeOx particles. Further measurements with temperature programmed reduction by hydrogen (H2-TPR) demonstrate more reducible species on the surface of 0.6Ce/SPCC, thus giving rise to better NH3-SCR performance at a low-temperature range. The X-ray photoelectron spectroscopy (XPS) analyses reveal that the Ce atom ratio is higher in 0.6Ce/SPCC, indicating that a higher concentration of catalytic active sites could be found on the surface of 0.6Ce/SPCC. The in situ diffused reflectance infrared fourier transform spectroscopy (DRIFTS) results indicate that the SCR reactions over 0.6Ce/SPCC follow both Eley-Rideal (E-R) and Langmuir-Hinshelwood (L-H) mechanisms. Hence, the SPCC might be a promising candidate to provide support for NH3-SCR catalysts, which also provide a valuable approach to recycling the fly ash.


Chemosphere ◽  
2016 ◽  
Vol 165 ◽  
pp. 110-117 ◽  
Author(s):  
Elena Collina ◽  
Marina Lasagni ◽  
Elsa Piccinelli ◽  
Manuela Nadia Anzano ◽  
Demetrio Pitea

Author(s):  
F. H. Louchet ◽  
L. P. Kubin

Experiments have been carried out on the 3 MeV electron microscope in Toulouse. The low temperature straining holder has been previously described Images given by an image intensifier are recorded on magnetic tape.The microtensile niobium samples are cut in a plane with the two operative slip directions [111] and lying in the foil plane. The tensile axis is near [011].Our results concern:- The transition temperature of niobium near 220 K: at this temperature and below an increasing difference appears between the mobilities of the screw and edge portions of dislocations loops. Source operation and interactions between screw dislocations of different slip system have been recorded.


Author(s):  
D. A. Smith

The nucleation and growth processes which lead to the formation of a thin film are particularly amenable to investigation by transmission electron microscopy either in situ or subsequent to deposition. In situ studies have enabled the observation of island nucleation and growth, together with addition of atoms to surface steps. This paper is concerned with post-deposition crystallization of amorphous alloys. It will be argued that the processes occurring during low temperature deposition of one component systems are related but the evidence is mainly indirect. Amorphous films result when the deposition conditions such as low temperature or the presence of impurities (intentional or unintentional) preclude the atomic mobility necessary for crystallization. Representative examples of this behavior are CVD silicon grown below about 670°C, metalloids, such as antimony deposited at room temperature, binary alloys or compounds such as Cu-Ag or Cr O2, respectively. Elemental metals are not stable in the amorphous state.


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 618
Author(s):  
Huan Du ◽  
Zhitao Han ◽  
Xitian Wu ◽  
Chenglong Li ◽  
Yu Gao ◽  
...  

Er-modified FeMn/TiO2 catalysts were prepared through the wet impregnation method, and their NH3-SCR activities were tested. The results showed that Er modification could obviously promote SO2 resistance of FeMn/TiO2 catalysts at a low temperature. The promoting effect and mechanism were explored in detail using various techniques, such as BET, XRD, H2-TPR, XPS, TG, and in-situ DRIFTS. The characterization results indicated that Er modification on FeMn/TiO2 catalysts could increase the Mn4+ concentration and surface chemisorbed labile oxygen ratio, which was favorable for NO oxidation to NO2, further accelerating low-temperature SCR activity through the “fast SCR” reaction. As fast SCR reaction could accelerate the consumption of adsorbed NH3 species, it would benefit to restrain the competitive adsorption of SO2 and limit the reaction between adsorbed SO2 and NH3 species. XPS results indicated that ammonium sulfates and Mn sulfates formed were found on Er-modified FeMn/TiO2 catalyst surface seemed much less than those on FeMn/TiO2 catalyst surface, suggested that Er modification was helpful for reducing the generation or deposition of sulfate salts on the catalyst surface. According to in-situ DRIFTS the results of, the presence of SO2 in feeding gas imposed a stronger impact on the NO adsorption than NH3 adsorption on Lewis acid sites of Er-modified FeMn/TiO2 catalysts, gradually making NH3-SCR reaction to proceed in E–R mechanism rather than L–H mechanism. DRIFTS.


2021 ◽  
pp. 0734242X2110039
Author(s):  
Huan Wang ◽  
Fenfen Zhu ◽  
Xiaoyan Liu ◽  
Meiling Han ◽  
Rongyan Zhang

This mini-review article summarizes the available technologies for the recycling of heavy metals (HMs) in municipal solid waste incineration (MSWI) fly ash (FA). Recovery technologies included thermal separation (TS), chemical extraction (CE), bioleaching, and electrochemical processes. The reaction conditions of various methods, the efficiency of recovering HMs from MSWI FA and the difficulties and solutions in the process of technical development were studied. Evaluation of each process has also been done to determine the best HM recycling method and future challenges. Results showed that while bioleaching had minimal environmental impact, the process was time-consuming. TS and CE were the most mature technologies, but the former process was not cost-effective. Overall, it has the greatest economic potential to recover metals by CE with scrubber liquid produced by a wet air pollution control system. An electrochemical process or solvent extraction could then be applied to recover HMs from the enriched leachate. Ongoing development of TS and bioleaching technologies could reduce the treatment cost or time.


2020 ◽  
Vol 48 (11) ◽  
pp. 1356-1364
Author(s):  
Jun HAN ◽  
Yang-shuo LIANG ◽  
Bo ZHAO ◽  
Zi-jiang XIONG ◽  
Lin-bo QIN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document