Guided wave signal processing and image fusion for in situ damage localization in plates

Wave Motion ◽  
2007 ◽  
Vol 44 (6) ◽  
pp. 482-492 ◽  
Author(s):  
Jennifer E. Michaels ◽  
Thomas E. Michaels
2021 ◽  
Author(s):  
Michał Mierczak ◽  
Jerzy Karczewski

AbstractThe article describes the establishment of the location of agate geodes using the GPR method in the area of the Simota gully (Lesser Poland Voivodeship). Agates (a multicolored variety of gemstone of chalcedony group) have multifaceted values that informed their study. Traditional methods of geode location are less reliable, hence the attempt to use the GPR method. Measurements were taken at two study test sites with subsurface geology of weathered melaphyre and pyroclastic deposits using a GPR system (ProEx). A high-frequency antenna (1.6 GHz) was used along with the pre-established profiles of lengths of 6-m and 10-cm intervals. Furthermore, simple soil tests using the soil sampler tool were made prior to the GPR measurement. The GPR results show significant high attenuation of the electromagnetic energy interpreted to be due to clay components of the regolith. Advanced signal processing procedures (such as the attribute of the signal) were used on the data for better enhancement that aided interpretation. Other anomalies depicted on the radargrams were thought to be the presence of roots, pieces of melaphyres-targeted agates. Furtherance to ascertain the reflection coefficients as recorded on the GPR data, in situ samples (root pieces, melaphyres, agates) taken were tested in the laboratory for electric permittivity property. Based on the interpretation results, several agate geodes were dug out from the ground.


2021 ◽  
pp. 147592172110339
Author(s):  
Guoqiang Liu ◽  
Binwen Wang ◽  
Li Wang ◽  
Yu Yang ◽  
Xiaguang Wang

Due to no requirement for direct interpretation of the guided wave signal, probability-based diagnostic imaging (PDI) algorithm is especially suitable for damage identification of complex composite structures. However, the weight distribution function of PDI algorithm is relatively inaccurate. It can reduce the damage localization accuracy. In order to improve the damage localization accuracy, an improved PDI algorithm is proposed. In the proposed algorithm, the weight distribution function is corrected by the acquired relative distances from defects to all actuator–sensor pairs and the reduction of the weight distribution areas. The validity of the proposed algorithm is assessed by identifying damages at different locations on a stiffened composite panel. The results show that the proposed algorithm can identify damage of a stiffened composite panel accurately.


Sign in / Sign up

Export Citation Format

Share Document