Exact expressions for transient forced internal gravity waves and spatially-localized wave packets in a Boussinesq fluid

Wave Motion ◽  
2015 ◽  
Vol 58 ◽  
pp. 117-128 ◽  
Author(s):  
V. Nijimbere ◽  
L.J. Campbell
1979 ◽  
Vol 90 (1) ◽  
pp. 161-178 ◽  
Author(s):  
R. H. J. Grimshaw

A Helmholtz velocity profile with velocity discontinuity 2U is embedded in an infinite continuously stratified Boussinesq fluid with constant Brunt—Väisälä frequency N. Linear theory shows that this system can support resonant over-reflexion, i.e. the existence of neutral modes consisting of outgoing internal gravity waves, whenever the horizontal wavenumber is less than N/2½U. This paper examines the weakly nonlinear theory of these modes. An equation governing the evolution of the amplitude of the interface displacement is derived. The time scale for this evolution is α−2, where α is a measure of the magnitude of the interface displacement, which is excited by an incident wave of magnitude O(α3). It is shown that the mode which is symmetrical with respect to the interface (and has a horizontal phase speed equal to the mean of the basic velocity discontinuity) remains neutral, with a finite amplitude wave on the interface. However, the other modes, which are not symmetrical with respect to the interface, become unstable owing to the self-interaction of the primary mode with its second harmonic. The interface displacement develops a singularity in a finite time.


1997 ◽  
Vol 351 ◽  
pp. 105-118 ◽  
Author(s):  
D. G. HURLEY

We consider the internal gravity waves that are produced in an inviscid Boussinesq fluid, whose Brunt–Väisälä frequency N is constant, by the small rectilinear vibrations of a horizontal elliptic cylinder whose major axis is inclined at an arbitrary angle to the horizontal. When the angular frequency ω is greater than N, no waves are produced and the governing elliptic equation is solved using conformal transformations. Analytic continuation in ω to values less than N, when waves are produced, is then used to determine the solution. It exhibits the surprising feature that, apart from certain phase differences, the form of the velocity distributions in each of the beams of waves that occur is the same for all values of the thickness ratio of the ellipse, the inclination of its major axis to the horizontal and the plane in which the vibrations are occurring. The Fourier decomposition of the velocity distribution is found and is used in a sequel, Part 2, to investigate the effects of viscous dissipation.In an important paper Makarov et al. (1990) have given an approximate solution for a vibrating circular cylinder in a viscous fluid. We show that the limit of this solution as the viscosity tends to zero is not the exact inviscid solution discussed herein. Further comparison of their work and ours will be made in Part 2.


2013 ◽  
Vol 739 ◽  
pp. 229-253 ◽  
Author(s):  
Andrea Maffioli ◽  
P. A. Davidson ◽  
S. B. Dalziel ◽  
N. Swaminathan

AbstractLocalized regions of turbulence, or turbulent clouds, in a stratified fluid are the subject of this study, which focuses on the edge dynamics occurring between the turbulence and the surrounding quiescent region. Through laboratory experiments and numerical simulations of stratified turbulent clouds, we confirm that the edge dynamics can be subdivided into materially driven intrusions and horizontally travelling internal wave-packets. Three-dimensional visualizations show that the internal gravity wave-packets are in fact large-scale pancake structures that grow out of the turbulent cloud into the adjacent quiescent region. The wave-packets were tracked in time, and it is found that their speed obeys the group speed relation for linear internal gravity waves. The energetics of the propagating waves, which include waveforms that are inclined with respect to the horizontal, are also considered and it is found that, after a period of two eddy turnover times, the internal gravity waves carry up to 16 % of the cloud kinetic energy into the initially quiescent region. Turbulent events in nature are often in the form of decaying turbulent clouds, and it is therefore suggested that internal gravity waves radiated from an initial cloud could play a significant role in the reorganization of energy and momentum in the atmosphere and oceans.


2001 ◽  
Vol 7 (2s) ◽  
pp. 26-33 ◽  
Author(s):  
O.E. Gotynyan ◽  
◽  
V.N. Ivchenko ◽  
Yu.G. Rapoport ◽  
◽  
...  

2021 ◽  
Vol 921 ◽  
Author(s):  
Christopher J. Howland ◽  
John R. Taylor ◽  
C.P. Caulfield

Abstract


2014 ◽  
Vol 32 (2) ◽  
pp. 181-186 ◽  
Author(s):  
O. Onishchenko ◽  
O. Pokhotelov ◽  
W. Horton ◽  
A. Smolyakov ◽  
T. Kaladze ◽  
...  

Abstract. The effect of the wind shear on the roll structures of nonlinear internal gravity waves (IGWs) in the Earth's atmosphere with the finite vertical temperature gradients is investigated. A closed system of equations is derived for the nonlinear dynamics of the IGWs in the presence of temperature gradients and sheared wind. The solution in the form of rolls has been obtained. The new condition for the existence of such structures was found by taking into account the roll spatial scale, the horizontal speed and wind shear parameters. We have shown that the roll structures can exist in a dynamically unstable atmosphere.


Sign in / Sign up

Export Citation Format

Share Document