The evolution of a stratified turbulent cloud

2013 ◽  
Vol 739 ◽  
pp. 229-253 ◽  
Author(s):  
Andrea Maffioli ◽  
P. A. Davidson ◽  
S. B. Dalziel ◽  
N. Swaminathan

AbstractLocalized regions of turbulence, or turbulent clouds, in a stratified fluid are the subject of this study, which focuses on the edge dynamics occurring between the turbulence and the surrounding quiescent region. Through laboratory experiments and numerical simulations of stratified turbulent clouds, we confirm that the edge dynamics can be subdivided into materially driven intrusions and horizontally travelling internal wave-packets. Three-dimensional visualizations show that the internal gravity wave-packets are in fact large-scale pancake structures that grow out of the turbulent cloud into the adjacent quiescent region. The wave-packets were tracked in time, and it is found that their speed obeys the group speed relation for linear internal gravity waves. The energetics of the propagating waves, which include waveforms that are inclined with respect to the horizontal, are also considered and it is found that, after a period of two eddy turnover times, the internal gravity waves carry up to 16 % of the cloud kinetic energy into the initially quiescent region. Turbulent events in nature are often in the form of decaying turbulent clouds, and it is therefore suggested that internal gravity waves radiated from an initial cloud could play a significant role in the reorganization of energy and momentum in the atmosphere and oceans.

2013 ◽  
Vol 43 (6) ◽  
pp. 1225-1239 ◽  
Author(s):  
Matthew H. Alford ◽  
Andrey Y. Shcherbina ◽  
Michael C. Gregg

Abstract Shipboard ADCP and towed CTD measurements are presented of a near-inertial internal gravity wave radiating away from a zonal jet associated with the Subtropical Front in the North Pacific. Three-dimensional spatial surveys indicate persistent alternating shear layers sloping downward and equatorward from the front. As a result, depth-integrated ageostrophic shear increases sharply equatorward of the front. The layers have a vertical wavelength of about 250 m and a slope consistent with a wave of frequency 1.01f. They extend at least 100 km south of the front. Time series confirm that the shear is associated with a downward-propagating near-inertial wave with frequency within 20% of f. A slab mixed layer model forced with shipboard and NCEP reanalysis winds suggests that wind forcing was too weak to generate the wave. Likewise, trapping of the near-inertial motions at the low-vorticity edge of the front can be ruled out because of the extension of the features well south of it. Instead, the authors suggest that the wave arises from an adjustment process of the frontal flow, which has a Rossby number about 0.2–0.3.


2002 ◽  
Vol 458 ◽  
pp. 75-101 ◽  
Author(s):  
ÁLVARO VIÚDEZ ◽  
DAVID G. DRITSCHEL

This paper discusses a potential-vorticity-conserving approach to modelling nonlinear internal gravity waves in a rotating Boussinesq fluid. The focus of the work is on the pseudo-plane motion (motion in the x, z-plane), for which we present a broad range of numerical results. In this case there are two material coordinates, the density and the y-component of the velocity in the inertial frame of reference, which are related to the x and z displacements of fluid particles relative to a reference configuration. The amount of potential vorticity within a fluid region bounded by isosurfaces of these material coordinates is proportional to the area within this region, and is therefore conserved as well. Two new potentials, defined in terms of the displacements and combining the vorticity and density fields, are introduced as new dependent variables. These potentials entirely govern the dynamics of internal gravity waves for the linearized system when the basic state has uniform potential vorticity. The final system of equations consists of three prognostic equations (for the potential vorticity and the Laplacians of the two potentials) and one diagnostic equation, of Monge–Ampère type, for a third potential. This diagnostic equation arises from the nonlinear definition of potential vorticity. The ellipticity of the Monge–Ampère equation implies both inertial and static stability. In three dimensions, the three potentials form a vector, whose (three-dimensional) Laplacian is equal to the vorticity plus the gradient of the perturbation density.Numerical simulations are carried out using a novel algorithm which directly evolves the potential vorticity, in a Lagrangian manner (following fluid particles), without diffusion. We present results which emphasize the way in which potential vorticity anomalies modify the characteristics of internal gravity waves, e.g. the propagation of internal wave packets, including reflection, refraction, and amplification. We also show how potential vorticity anomalies may generate internal gravity waves, along with the subsequent ‘geostrophic adjustment’ of the flow to a ‘balanced’ wave-less state. These examples, and the straightforward extension of the theoretical and numerical approach to three dimensions, point to a direct and accurate means to elucidate the role of potential vorticity in internal gravity wave interactions. As such, this approach may help a better understanding of the observed characteristics of internal gravity waves in the oceans.


Author(s):  
Michael A. H. Hedlin ◽  
Kristoffer T. Walker

We discuss the use of reverse time migration (RTM) with dense seismic networks for the detection and location of sources of atmospheric infrasound. Seismometers measure the response of the Earth's surface to infrasound through acoustic-to-seismic coupling. RTM has recently been applied to data from the USArray network to create a catalogue of infrasonic sources in the western US. Specifically, several hundred sources were detected in 2007–2008, many of which were not observed by regional infrasonic arrays. The influence of the east–west stratospheric zonal winds is clearly seen in the seismic data with most detections made downwind of the source. We study this large-scale anisotropy of infrasonic propagation, using a winter and summer source in Idaho. The bandpass-filtered (1–5 Hz) seismic waveforms reveal in detail the two-dimensional spread of the infrasonic wavefield across the Earth's surface within approximately 800 km of the source. Using three-dimensional ray tracing, we find that the stratospheric winds above 30 km altitude in the ground-to-space (G2S) atmospheric model explain well the observed anisotropy pattern. We also analyse infrasound from well-constrained explosions in northern Utah with a denser IRIS PASSCAL seismic network. The standard G2S model correctly predicts the anisotropy of the stratospheric duct, but it incorrectly predicts the dimensions of the shadow zones in the downwind direction. We show that the inclusion of finer-scale structure owing to internal gravity waves infills the shadow zones and predicts the observed time durations of the signals. From the success of this method in predicting the observations, we propose that multipathing owing to fine scale, layer-cake structure is the primary mechanism governing propagation for frequencies above approximately 1 Hz and infer that stochastic approaches incorporating internal gravity waves are a useful improvement to the standard G2S model for infrasonic propagation modelling.


1987 ◽  
Vol 177 ◽  
pp. 359-379 ◽  
Author(s):  
S. N. Brown ◽  
H. K. Cheng

A theoretical study is made of the disturbance produced by an oscillating, shallow topographical feature in horizontal relative motion in a rapidly rotating, linearly stratified, unbounded fluid. For a sinusoidal surface oscillation, an explicit solution is obtained in terms of wavenumber spectra of the topography. The oscillating far-field behaviour is shown to consist of a large-scale, cyclonic component above the topography and a system of inertial waves behind the caustics, which spreads predominantly in the downstream direction. A significant property of the flow field is its dependence on a frequency threshold familiar from classical works on internal gravity waves in the absence of rotation, determined by the Brunt-Väisälä value. When the frequency is supercritical, a prominent circle of maximum disturbance appears in the far field, which provides the transition boundary between two distinct cyclonic structures and an upstream barrier to the propagating waves ahead of the obstacle. The circle has a radius depending on the relative magnitude of the pulsating frequency and the Brunt-Väisälä value, and is distinctly marked also by a phase jump in pressure and velocities. These features are substantiated by numerical examples of the full solution at a large but finite distance above the obstacle at supercritical frequencies. The circle of maximum disturbance signifies a preferential direction for energy propagation unaccounted for by group velocity. Its relation to the classical result of Görtler in the homogeneous case and that in the classical internal-gravity-wave theory are examined.


1993 ◽  
Vol 247 ◽  
pp. 205-229
Author(s):  
Hong Ma

The effect of a geostrophic boundary current on internal gravity waves is studied with a reduced-gravity model. We found that the boundary current not only modifies the coastal Kelvin wave, but also forms wave guides for short internal gravity waves. The combined effects of current shear, the boundary, and the slope of the interface create the trapping mechanism. These trapped internal gravity waves appear as groups of discrete zonal modes. They have wavelengths comparable to or shorter than the internal Rossby radius of deformation. Their phase speeds are close to that of the internal Kelvin wave. However, they can propagate both in, or opposite to, the direction of the Kelvin wave. The results of the present work suggest the possibility of finding an energetic internal gravity wave phenomenon with near-inertial frequency in a broad geostrophic boundary current.


2010 ◽  
Vol 67 (8) ◽  
pp. 2504-2519 ◽  
Author(s):  
Daniel Ruprecht ◽  
Rupert Klein ◽  
Andrew J. Majda

Abstract Starting from the conservation laws for mass, momentum, and energy together with a three-species bulk microphysics model, a model for the interaction of internal gravity waves and deep convective hot towers is derived using multiscale asymptotic techniques. From the leading-order equations, a closed model for the large-scale flow is obtained analytically by applying horizontal averages conditioned on the small-scale hot towers. No closure approximations are required besides adopting the asymptotic limit regime on which the analysis is based. The resulting model is an extension of the anelastic equations linearized about a constant background flow. Moist processes enter through the area fraction of saturated regions and through two additional dynamic equations describing the coupled evolution of the conditionally averaged small-scale vertical velocity and buoyancy. A two-way coupling between the large-scale dynamics and these small-scale quantities is obtained: moisture reduces the effective stability for the large-scale flow, and microscale up- and downdrafts define a large-scale averaged potential temperature source term. In turn, large-scale vertical velocities induce small-scale potential temperature fluctuations due to the discrepancy in effective stability between saturated and nonsaturated regions. The dispersion relation and group velocity of the system are analyzed and moisture is found to have several effects: (i) it reduces vertical energy transport by waves, (ii) it increases vertical wavenumbers but decreases the slope at which wave packets travel, (iii) it introduces a new lower horizontal cutoff wavenumber in addition to the well-known high wavenumber cutoff, and (iv) moisture can cause critical layers. Numerical examples reveal the effects of moisture on steady-state and time-dependent mountain waves in the present hot-tower regime.


1971 ◽  
Vol 50 (3) ◽  
pp. 545-563 ◽  
Author(s):  
R. J. Breeding

The behaviour of internal gravity waves near a critical level is investigated by means of a transient two dimensional finite difference model. All the important non-linear, viscosity and thermal conduction terms are included, but the rotational terms are omitted and the perturbations are assumed to be incompressible. For Richardson numbers greater than 2·0 the interaction of the incident wave and the mean flow is largely as predicted by the linear theory–very little of the incident wave penetrates through the critical level and almost all of the wave's energy and momentum are absorbed by changes in the original wind. However, these changes in the wind are centred above the critical level, so that the change in the wind has only a small effect on the height of the critical level. For Richardson numbers less than 2·0 and greater than 0·25 a significant fraction of the incident wave is reflected, part of which could have been predicted by the linear theory. For these stable Richardson numbers a steady state is apparently reached where the maximum wind change continues to grow slowly, but the minimum Richardson number and wave magnitudes remain constant. This condition represents a balance between the diffusion outward of the added momentum and the rate at which it is absorbed. For Richardson numbers less than 0·25, over-reflexion, predicted from the linear theory, is observed, but because the system is dynamically unstable no over-reflecting steady state is ever reached.


2020 ◽  
Author(s):  
Claudia Stephan

<p>Idealized simulations have shown decades ago that shallow clouds generate internal gravity waves, which under certain atmospheric background conditions become trapped inside the troposphere and influence the development of clouds. These feedbacks, which occur at horizontal scales of up to several tens of km are neither resolved, nor parameterized in traditional global climate models (GCMs), while the newest generation of GCMs is starting to resolve them. The interactions between the convective boundary layer and trapped waves have almost exclusively been studied in highly idealized frameworks and it remains unclear to what degree this coupling affects the organization of clouds and convection in the real atmosphere. Here, the coupling between clouds and trapped waves is examined in storm-resolving simulations that span the entirety of the tropical Atlantic and are initialized and forced by meteorological analyses. The coupling between clouds and trapped waves is sufficiently strong to be detected in these simulations of full complexity.  Stronger upper-tropospheric westerly winds are associated with a stronger cloud-wave coupling. In the simulations this results in a highly-organized scattered cloud field with cloud spacings of about 19 km, matching the dominant trapped wavelength. Based on the large-scale atmospheric state wave theory can reliably predict the regions and times where cloud-wave feedbacks become relevant to convective organization. Theory, the simulations and satellite imagery imply a seasonal cycle in the trapping of gravity waves. </p>


2020 ◽  
Vol 50 (9) ◽  
pp. 2713-2733
Author(s):  
Yulin Pan ◽  
Brian K. Arbic ◽  
Arin D. Nelson ◽  
Dimitris Menemenlis ◽  
W. R. Peltier ◽  
...  

AbstractWe consider the power-law spectra of internal gravity waves in a rotating and stratified ocean. Field measurements have shown considerable variability of spectral slopes compared to the high-wavenumber, high-frequency portion of the Garrett–Munk (GM) spectrum. Theoretical explanations have been developed through wave turbulence theory (WTT), where different power-law solutions of the kinetic equation can be found depending on the mechanisms underlying the nonlinear interactions. Mathematically, these are reflected by the convergence properties of the so-called collision integral (CL) at low- and high-frequency limits. In this work, we study the mechanisms in the formation of the power-law spectra of internal gravity waves, utilizing numerical data from the high-resolution modeling of internal waves (HRMIW) in a region northwest of Hawaii. The model captures the power-law spectra in broad ranges of space and time scales, with scalings ω−2.05±0.2 in frequency and m−2.58±0.4 in vertical wavenumber. The latter clearly deviates from the GM76 spectrum but is closer to a family of induced-diffusion-dominated solutions predicted by WTT. Our analysis of nonlinear interactions is performed directly on these model outputs, which is fundamentally different from previous work assuming a GM76 spectrum. By applying a bicoherence analysis and evaluations of modal energy transfer, we show that the CL is dominated by nonlocal interactions between modes in the power-law range and low-frequency inertial motions. We further identify induced diffusion and the near-resonances at its spectral vicinity as dominating the formation of power-law spectrum.


Sign in / Sign up

Export Citation Format

Share Document