Nanometer size wear debris generated from ultra high molecular weight polyethylene in vivo

Wear ◽  
2009 ◽  
Vol 266 (1-2) ◽  
pp. 349-355 ◽  
Author(s):  
Monika Lapcikova ◽  
Miroslav Slouf ◽  
Jiri Dybal ◽  
Eva Zolotarevova ◽  
Gustav Entlicher ◽  
...  
Author(s):  
J L Hailey ◽  
E Ingham ◽  
M Stone ◽  
B M Wroblewski ◽  
J Fisher

The objective of this study was to investigate the effect of counterface roughness and lubricant on the morphology of ultra-high molecular weight polyethylene (UHMWPE) wear debris generated in laboratory wear tests, and to compare this with debris isolated from explanted tissue. Laboratory tests used UHMWPE pins sliding against stainless steel counterfaces. Both water and serum lubricants were used in conjunction with rough and smooth counterfaces. The lubricants and tissue from revision hip surgery were processed to digest the proteins and permit filtration. This involved denaturing the proteins with potassium hydroxide (KOH), sedimentation of any remaining proteins, and further digestion of these proteins with chromic acid. All fractions were then passed through a 0.2 μm membrane, and the debris examined using scanning electron microscopy. The laboratory studies showed that the major variable influencing debris morphology was counterface roughness. The rougher counter-faces produced larger numbers of smaller particles, with a size range extending below 1 μm. For smooth counterfaces there were fewer of these small particles, and evidence of larger platelets, greater than 10 μm in diameter. Analysis of the debris from explanted tissues showed a wide variation in the particle size distribution, ranging from below 1 μm up to several millimetres in size. Of major clinical significance in relation to osteolysis and loosening is roughening of the femoral components, which may lead to greater numbers of the sub-micron-sized particles.


Author(s):  
Takuya NANBU ◽  
Tatsuki MATSUURA ◽  
Yoshitaka NAKANISHI ◽  
Mutsumi TOUGE ◽  
Hiroshi MIZUTA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document