Correlation Between Laminar Wall Shear Stress and Growth of Unruptured Cerebral Aneurysms: In Vivo Assessment

2019 ◽  
Vol 131 ◽  
pp. e599-e605 ◽  
Author(s):  
Denise Brunozzi ◽  
Peter Theiss ◽  
Amanda Andrews ◽  
Sepideh Amin-Hanjani ◽  
Fady T. Charbel ◽  
...  
2012 ◽  
Vol 134 (9) ◽  
Author(s):  
Matthew D. Ford ◽  
Ugo Piomelli

Cerebral aneurysms are a common cause of death and disability. Of all the cardiovascular diseases, aneurysms are perhaps the most strongly linked with the local fluid mechanic environment. Aside from early in vivo clinical work that hinted at the possibility of high-frequency intra-aneurysmal velocity oscillations, flow in cerebral aneurysms is most often assumed to be laminar. This work investigates, through the use of numerical simulations, the potential for disturbed flow to exist in the terminal aneurysm of the basilar bifurcation. The nature of the disturbed flow is explored using a series of four idealized basilar tip models, and the results supported by four patient specific terminal basilar tip aneurysms. All four idealized models demonstrated instability in the inflow jet through high frequency fluctuations in the velocity and the pressure at approximately 120 Hz. The instability arises through a breakdown of the inflow jet, which begins to oscillate upon entering the aneurysm. The wall shear stress undergoes similar high-frequency oscillations in both magnitude and direction. The neck and dome regions of the aneurysm present 180 deg changes in the direction of the wall shear stress, due to the formation of small recirculation zones near the shear layer of the jet (at the frequency of the inflow jet oscillation) and the oscillation of the impingement zone on the dome of the aneurysm, respectively. Similar results were observed in the patient-specific models, which showed high frequency fluctuations at approximately 112 Hz in two of the four models and oscillations in the magnitude and direction of the wall shear stress. These results demonstrate that there is potential for disturbed laminar unsteady flow in the terminal aneurysm of the basilar bifurcation. The instabilities appear similar to the first instability mode of a free round jet.


Author(s):  
Jennifer Dolan ◽  
Song Liu ◽  
Hui Meng ◽  
John Kolega

In both human and animal models, cerebral aneurysms tend to develop at the apices of bifurcations in the cerebral vasculature. Due to the focal nature of aneurysm development it has long been speculated that hemodynamics are an important factor in aneurysm susceptibility. The local hemodynamics of bifurcations are complex, being characterized by flow impingement causing a high frictional force on the vessel wall known as wall shear stress (WSS) and significant flow acceleration or deceleration, manifested as the positive or negative spatial gradient of WSS (WSSG). In vivo studies have recently identified that aneurysm initiation occurs at areas of the vessel wall that experience a combination of both high WSS and positive WSSG [1,2]


Author(s):  
Jennifer Dolan ◽  
Frasier Sim ◽  
Hui Meng ◽  
John Kolega

In both human and animal models, cerebral aneurysms tend to develop at the apices of bifurcations in the cerebral vasculature where the blood vessel wall experiences complex hemodynamics. In vivo studies have recently revealed that the initiation of cerebral aneurysms is confined to a well-defined hemodynamic microenvironment [1,2]. Metaxa et al. [2] found that early aneurysm remodeling initiates where the vessel wall experiences high wall shear stress (WSS) and flow is accelerating, thus creating a positive spatial gradient in WSS (WSSG). Closer examination of such in vivo studies reveals that exposure of the vessel wall to equally high WSS in the presence of decelerating flow, that is, negative WSSG, does not result in aneurysm-like destruction.


Author(s):  
Jennifer Dolan ◽  
Sukhjinder Singh ◽  
Hui Meng ◽  
John Kolega

Cerebral aneurysms tend to develop at bifurcation apices or the outer side of curved vessels where the blood vessel wall experiences complex hemodynamics. In vivo studies have recently revealed that the initiation of cerebral aneurysms is confined to a well-defined hemodynamic microenvironment. Specifically aneurysms form where the vessel wall experiences high fluid shear stress (wall shear stress, WSS) and flow is accelerating, so that the wall is exposed to a positive spatial gradient in the fluid shear stress (wall shear stress gradient, WSSG)[1,2]. Closer examination of such in vivo studies reveals that exposure of the vessel wall to equally high WSS in the presence of decelerating flow, that is, negative WSSG, does not result in aneurysm-like remodeling.


2013 ◽  
Vol 119 (1) ◽  
pp. 172-179 ◽  
Author(s):  
Laith M. Kadasi ◽  
Walter C. Dent ◽  
Adel M. Malek

Object Wall shear stress (WSS) plays a role in regulating endothelial function and has been suspected in cerebral aneurysm rupture. The aim of this study was to evaluate the spatial relationship between localized thinning of the aneurysm dome and estimated hemodynamic factors, hypothesizing that a low WSS would correlate with aneurysm wall degeneration. Methods Steady-state computational fluid dynamics analysis was performed on 16 aneurysms in 14 patients based on rotational angiographic volumes to derive maps of WSS, its spatial gradient (WSSG), and pressure. Local dome thickness was estimated categorically based on tissue translucency from high-resolution intraoperative microscopy findings. Each computational model was oriented to match the corresponding intraoperative view and numerically sampled in thin and normal adjacent dome regions, with controls at the neck and parent vessel. The pressure differential was computed as the difference between aneurysm dome points and the mean neck pressure. Pulsatile time-dependent confirmatory analysis was carried out in 7 patients. Results Matched-pair analysis revealed significantly lower levels of WSS (0.381 Pa vs 0.816 Pa; p < 0.0001) in thin-walled dome areas than in adjacent baseline thickness regions. Similarly, log WSSG and log WSS × WSSG were both lower in thin regions (both p < 0.0001); multivariate logistic regression analysis identified lower WSS and higher pressure differential as independent correlates of lower wall thickness with an area under the curve of 0.80. This relationship was observed in both steady-state and time-dependent pulsatile analyses. Conclusions Thin-walled regions of unruptured cerebral aneurysms colocalize with low WSS, suggesting a cellular mechanotransduction link between areas of flow stasis and aneurysm wall thinning.


2010 ◽  
Vol 63 (6) ◽  
pp. 1529-1536 ◽  
Author(s):  
Andreas Harloff ◽  
Andrea Nußbaumer ◽  
Simon Bauer ◽  
Aurélien F. Stalder ◽  
Alex Frydrychowicz ◽  
...  

Author(s):  
Juan R. Cebral ◽  
Christopher M. Putman

Cerebral aneurysms are widely believed to form and grow as a result of the interactions of hemodynamics and wall mechano-biology. Researchers have used a variety of tools to study these complex multi-factorial mechanisms including animal, in vitro, and computational models. The goal of these experiments has been to approximate the in vivo environment so that theories about the natural history of brain aneurysms can be developed and tested in realistic systems. Studying the link between hemodynamics and clinical observations of aneurysm progression is necessary to reach an understanding of the relative importance of the different mechanisms involved in these processes [1]. The objective of our research is to investigate the possible relationship between wall shear stress (WSS) — which is known to regulate mechano-biological processes at the arterial wall — produced by different blood flow patterns and the evolution and rupture of cerebral aneurysms.


Stroke ◽  
2003 ◽  
Vol 34 (1) ◽  
pp. 187-192 ◽  
Author(s):  
Satoshi Tateshima ◽  
Yuichi Murayama ◽  
J. Pablo Villablanca ◽  
Taku Morino ◽  
Kiyoe Nomura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document