scholarly journals Spatially resolved sampling of the human oral cavity for metabolic profiling

2021 ◽  
Vol 2 (4) ◽  
pp. 101002
Author(s):  
Alessio Ciurli ◽  
Rico J.E. Derks ◽  
Maximilian Liebl ◽  
Christine Ammon ◽  
Jacques Neefjes ◽  
...  
1993 ◽  
Vol 43 (4) ◽  
pp. 631-639 ◽  
Author(s):  
Y. ETOH ◽  
F. E. DEWHIRST ◽  
B. J. PASTER ◽  
A. YAMAMOTO ◽  
N. GOTO

2009 ◽  
Vol 75 (11) ◽  
pp. 3777-3786 ◽  
Author(s):  
S. R. Vartoukian ◽  
R. M. Palmer ◽  
W. G. Wade

ABSTRACT Members of the phylum “Synergistetes” have frequently been detected in the human oral cavity at sites of dental disease, but they have rarely been detected in studies of oral health. Only two oral “Synergistetes” taxa are cultivable. The aims of this study were to investigate the diversity of “Synergistetes” in the oral cavity, to establish whether “Synergistetes” taxa are more strongly associated with periodontitis than with oral health, and to visualize unculturable “Synergistetes” in situ. Sixty samples (saliva, dental plaque, and mucosal swabs) were collected from five subjects with periodontitis and five periodontally healthy controls. Using phylum-specific 16S rRNA gene primers, “Synergistetes” were identified by PCR, cloning, and sequencing of 48 clones per PCR-positive sample. Subgingival plaque samples were labeled with probes targeting rRNA of unculturable oral “Synergistetes” using fluorescent in situ hybridization (FISH). Analysis of 1,664 clones revealed 12 “Synergistetes” operational taxonomic units (OTUs) at the 99% sequence identity level, 5 of which were novel. “Synergistetes” OTU 4.2 was found in significantly more subjects with periodontitis than controls (P = 0.048) and was more abundant in subgingival plaque at diseased sites than at healthy sites in subjects with periodontitis (P = 0.019) or controls (P = 0.019). FISH analysis revealed that unculturable oral “Synergistetes” cells were large curved bacilli. The human oral cavity harbors a diverse population of “Synergistetes.” “Synergistetes” OTU 4.2 is associated with periodontitis and may have a pathogenic role.


2018 ◽  
Vol 13 (14) ◽  
pp. 1611-1624 ◽  
Author(s):  
Maxime DM Fonkou ◽  
Jean-Charles Dufour ◽  
Grégory Dubourg ◽  
Didier Raoult

2010 ◽  
Author(s):  
M.-R. Tsai ◽  
S.-Y. Chen ◽  
D.-B. Shieh ◽  
P.-J. Lou ◽  
C.-K. Sun

1969 ◽  
Vol 23 ◽  
pp. 1409-1438 ◽  
Author(s):  
Kauko K. Mäkinen ◽  
Hugo Theorell ◽  
Jan Sjövall ◽  
P. H. Nielsen ◽  
Alf A. Lindberg ◽  
...  

2008 ◽  
Vol 58 (8) ◽  
pp. 1788-1791 ◽  
Author(s):  
J. Downes ◽  
S. J. Hooper ◽  
M. J. Wilson ◽  
W. G. Wade

2018 ◽  
Author(s):  
Jeffrey S. McLean ◽  
Batbileg Bor ◽  
Thao T. To ◽  
Quanhui Liu ◽  
Kristopher A. Kerns ◽  
...  

ABSTRACTRecently, we discovered that a member of the Saccharibacteria/TM7 phylum (strain TM7x) isolated from the human oral cavity, has an ultra-small cell size (200-300nm), a highly reduced genome (705 Kbp) with limited de novo biosynthetic capabilities, and a very novel lifestyle as an obligate epibiont on the surface of another bacterium 1. There has been considerable interest in uncultivated phyla, particularly those that are now classified as the proposed candidate phyla radiation (CPR) reported to include 35 or more phyla and are estimated to make up nearly 15% of the domain Bacteria. Most members of the larger CPR group share genomic properties with Saccharibacteria including reduced genomes (<1Mbp) and lack of biosynthetic capabilities, yet to date, strain TM7x represents the only member of the CPR that has been cultivated and is one of only three CPR routinely detected in the human body. Through small subunit ribosomal RNA (SSU rRNA) gene surveys, members of the Saccharibacteria phylum are reported in many environments as well as within a diversity of host species and have been shown to increase dramatically in human oral and gut diseases. With a single copy of the 16S rRNA gene resolved on a few limited genomes, their absolute abundance is most often underestimated and their potential role in disease pathogenesis is therefore underappreciated. Despite being an obligate parasite dependent on other bacteria, six groups (G1-G6) are recognized using SSU rRNA gene phylogeny in the oral cavity alone. At present, only genomes from the G1 group, which includes related and remarkably syntenic environmental and human oral associated representatives1, have been uncovered to date. In this study we systematically captured the spectrum of known diversity in this phylum by reconstructing completely novel Class level genomes belonging to groups G3, G6 and G5 through cultivation enrichment and/or metagenomic binning from humans and mammalian rumen. Additional genomes for representatives of G1 were also obtained from modern oral plaque and ancient dental calculus. Comparative analysis revealed remarkable divergence in the host-associated members across this phylum. Within the human oral cavity alone, variation in as much as 70% of the genes from nearest oral clade (AAI 50%) as well as wide GC content variation is evident in these newly captured divergent members (G3, G5 and G6) with no environmental relatives. Comparative analyses suggest independent episodes of transmission of these TM7 groups into humans and convergent evolution of several key functions during adaptation within hosts. In addition, we provide evidence from in vivo collected samples that each of these major groups are ultra-small in size and are found attached to larger cells.


Sign in / Sign up

Export Citation Format

Share Document