scholarly journals Retinoic acid signaling targets Hox genes during the amphioxus gastrula stage: Insights into early anterior–posterior patterning of the chordate body plan

2010 ◽  
Vol 338 (1) ◽  
pp. 98-106 ◽  
Author(s):  
Demian Koop ◽  
Nicholas D. Holland ◽  
Marie Sémon ◽  
Susana Alvarez ◽  
Angel Rodriguez de Lera ◽  
...  
Development ◽  
2020 ◽  
Vol 148 (1) ◽  
pp. dev193813
Author(s):  
Alejandra C. López-Delgado ◽  
Irene Delgado ◽  
Vanessa Cadenas ◽  
Fátima Sánchez-Cabo ◽  
Miguel Torres

ABSTRACTVertebrate axial skeletal patterning is controlled by co-linear expression of Hox genes and axial level-dependent activity of HOX protein combinations. MEIS transcription factors act as co-factors of HOX proteins and profusely bind to Hox complex DNA; however, their roles in mammalian axial patterning remain unknown. Retinoic acid (RA) is known to regulate axial skeletal element identity through the transcriptional activity of its receptors; however, whether this role is related to MEIS/HOX activity remains unknown. Here, we study the role of Meis in axial skeleton formation and its relationship to the RA pathway in mice. Meis elimination in the paraxial mesoderm produces anterior homeotic transformations and rib mis-patterning associated to alterations of the hypaxial myotome. Although Raldh2 and Meis positively regulate each other, Raldh2 elimination largely recapitulates the defects associated with Meis deficiency, and Meis overexpression rescues the axial skeletal defects in Raldh2 mutants. We propose a Meis-RA-positive feedback loop, the output of which is Meis levels, that is essential to establish anterior-posterior identities and patterning of the vertebrate axial skeleton.


Diversity ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 398
Author(s):  
Alice M. H. Bedois ◽  
Hugo J. Parker ◽  
Robb Krumlauf

In metazoans, Hox genes are key drivers of morphogenesis. In chordates, they play important roles in patterning the antero-posterior (A-P) axis. A crucial aspect of their role in axial patterning is their collinear expression, a process thought to be linked to their response to major signaling pathways such as retinoic acid (RA) signaling. The amplification of Hox genes following major events of genome evolution can contribute to morphological diversity. In vertebrates, RA acts as a key regulator of the gene regulatory network (GRN) underlying hindbrain segmentation, which includes Hox genes. This review investigates how the RA signaling machinery has evolved and diversified and discusses its connection to the hindbrain GRN in relation to diversity. Using non-chordate and chordate deuterostome models, we explore aspects of ancient programs of axial patterning in an attempt to retrace the evolution of the vertebrate hindbrain GRN. In addition, we investigate how the RA signaling machinery has evolved in vertebrates and highlight key examples of regulatory diversification that may have influenced the GRN for hindbrain segmentation. Finally, we describe the value of using lamprey as a model for the early-diverged jawless vertebrate group, to investigate the elaboration of A-P patterning mechanisms in the vertebrate lineage.


2010 ◽  
Vol 108 (1) ◽  
pp. 161-166 ◽  
Author(s):  
Jinwoong Bok ◽  
Steven Raft ◽  
Kyoung-Ah Kong ◽  
Soo Kyung Koo ◽  
Ursula C. Dräger ◽  
...  

Vertebrate hearing and balance are based in complex asymmetries of inner ear structure. Here, we identify retinoic acid (RA) as an extrinsic signal that acts directly on the ear rudiment to affect its compartmentalization along the anterior-posterior axis. A rostrocaudal wave of RA activity, generated by tissues surrounding the nascent ear, induces distinct responses from anterior and posterior halves of the inner ear rudiment. Prolonged response to RA by posterior otic tissue correlates with Tbx1 transcription and formation of mostly nonsensory inner ear structures. By contrast, anterior otic tissue displays only a brief response to RA and forms neuronal elements and most sensory structures of the inner ear.


Sign in / Sign up

Export Citation Format

Share Document