scholarly journals WNT5A-Ca2+-CaN-NFAT signalling plays a permissive role during cartilage differentiation in embryonic chick digit development

2021 ◽  
Vol 469 ◽  
pp. 86-95
Author(s):  
Alejandro Farrera-Hernández ◽  
Jessica Cristina Marín-Llera ◽  
Jesús Chimal-Monroy
1989 ◽  
Vol 135 (2) ◽  
pp. 424-430 ◽  
Author(s):  
William M. Kulyk ◽  
Barbara J. Rodgers ◽  
Karen Greer ◽  
Robert A. Kosher

Author(s):  
M.R. Richter ◽  
R.V. Blystone

Dexamethasone and other synthetic analogs of corticosteroids have been employed clinically as enhancers of lung development. The mechanism(s) by which this steroid induction of later lung maturation operates is not clear. This study reports the effect on lung epithelia of dexamethasone administered at different intervals during development. White Leghorn chick embryos were used so as to remove possible maternal and placental influences on the exogenously applied steroid. Avian lung architecture does vary from mammals; however, respiratory surfactant produced by the lung epithelia serves an equally critical role in avian lung physiology.


2001 ◽  
Vol 120 (5) ◽  
pp. A595-A595
Author(s):  
M TAKEEDA ◽  
Y KOMOIKE ◽  
S KATO ◽  
H MIMAKI ◽  
K TAKEUCHI

2007 ◽  
Vol 12 (3) ◽  
pp. 370-377 ◽  
Author(s):  
Andrea M. Stahl ◽  
Gordon Ruthel ◽  
Edna Torres-Melendez ◽  
Tara A. Kenny ◽  
Rekha G. Panchal ◽  
...  

Botulinum toxin is an exceedingly potent inhibitor of neurotransmission across the neuromuscular junction, causing flaccid paralysis and death. The potential for misuse of this deadly poison as a bioweapon has added a greater urgency to the search for effective therapeutics. The development of sensitive and efficient cell-based assays for the evaluation of toxin antagonists is crucial to the rapid and successful identification of therapeutic compounds. The authors evaluated the sensitivity of primary cultures from 4 distinct regions of the embryonic chick nervous system to botulinum neurotoxin A (BoNT/A) cleavage of synaptosomal-associated protein of 25 kD (SNAP-25). Although differences in sensitivity were apparent, SNAP-25 cleavage was detectable in neuronal cells from each of the 4 regions within 3 h at BoNT/A concentrations of 1 nM or lower. Co-incubation of chick neurons with BoNT/A and toxin-neutralizing antibodies inhibited SNAP-25 cleavage, demonstrating the utility of these cultures for the assay of BoNT/A antagonists. ( Journal of Biomolecular Screening 2007:370-377)


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Zhen Li ◽  
Sumin Gu ◽  
Yumeng Quan ◽  
Kulandaiappan Varadaraj ◽  
Jean X. Jiang

AbstractCongenital cataracts are associated with gene mutations, yet the underlying mechanism remains largely unknown. Here we reported an embryonic chick lens model that closely recapitulates the process of cataract formation. We adopted dominant-negative site mutations that cause congenital cataracts, connexin, Cx50E48K, aquaporin 0, AQP0R33C, αA-crystallin, CRYAA R12C and R54C. The recombinant retroviruses containing these mutants were microinjected into the occlusive lumen of chick lenses at early embryonic development. Cx50E48K expression developed cataracts associated with disorganized nuclei and enlarged extracellular spaces. Expression of AQP0R33C resulted in cortical cataracts, enlarged extracellular spaces and distorted fiber cell organization. αA crystallin mutations distorted lens light transmission and increased crystalline protein aggregation. Together, retroviral expression of congenital mutant genes in embryonic chick lenses closely mimics characteristics of human congenital cataracts. This model will provide an effective, reliable in vivo system to investigate the development and underlying mechanism of cataracts and other genetic diseases.


Sign in / Sign up

Export Citation Format

Share Document