Anterior lateral plate mesoderm gives rise to multiple tissues and requires tbx5a function in left-right asymmetry, migration dynamics, and cell specification of late-addition cardiac cells

2021 ◽  
Vol 472 ◽  
pp. 52-66
Author(s):  
Lindsey M.F. Mao ◽  
Erin A.T. Boyle Anderson ◽  
Robert K. Ho
2017 ◽  
Vol 145 ◽  
pp. S79-S80
Author(s):  
Karin Dorien Prummel ◽  
Christopher Hess ◽  
Eline Brombacher ◽  
Anastasia Felker ◽  
Christian Mosimann

2016 ◽  
Vol 371 (1710) ◽  
pp. 20150402 ◽  
Author(s):  
Rebecca D. Burdine ◽  
Daniel T. Grimes

Left–right (L-R) asymmetry of the internal organs of vertebrates is presaged by domains of asymmetric gene expression in the lateral plate mesoderm (LPM) during somitogenesis. Ciliated L-R coordinators (LRCs) are critical for biasing the initiation of asymmetrically expressed genes, such as nodal and pitx2 , to the left LPM. Other midline structures, including the notochord and floorplate, are then required to maintain these asymmetries. Here we report an unexpected role for the zebrafish EGF-CFC gene one-eyed pinhead ( oep ) in the midline to promote pitx2 expression in the LPM. Late zygotic oep (LZ oep ) mutants have strongly reduced or absent pitx2 expression in the LPM, but this expression can be rescued to strong levels by restoring oep in midline structures only. Furthermore, removing midline structures from LZ oep embryos can rescue pitx2 expression in the LPM, suggesting the midline is a source of an LPM pitx2 repressor that is itself inhibited by oep . Reducing lefty1 activity in LZ oep embryos mimics removal of the midline, implicating lefty1 in the midline-derived repression. Together, this suggests a model where Oep in the midline functions to overcome a midline-derived repressor, involving lefty1 , to allow for the expression of left side-specific genes in the LPM. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’.


Development ◽  
2012 ◽  
Vol 139 (13) ◽  
pp. 2426-2435 ◽  
Author(s):  
R. S. Saund ◽  
M. Kanai-Azuma ◽  
Y. Kanai ◽  
I. Kim ◽  
M. T. Lucero ◽  
...  

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Hajime Fukui ◽  
Takahiro Miyazaki ◽  
Renee Wei-Yan Chow ◽  
Hiroyuki Ishikawa ◽  
Hiroyuki Nakajima ◽  
...  

The differentiation of the lateral plate mesoderm cells into heart field cells constitutes a critical step in the development of cardiac tissue and the genesis of functional cardiomyocytes. Hippo signaling controls cardiomyocyte proliferation, but the role of Hippo signaling during early cardiogenesis remains unclear. Here, we show that Hippo signaling regulates atrial cell number by specifying the developmental potential of cells within the anterior lateral plate mesoderm (ALPM), which are incorporated into the venous pole of the heart tube and ultimately into the atrium of the heart. We demonstrate that Hippo signaling acts through large tumor suppressor kinase 1/2 to modulate BMP signaling and the expression of hand2, a key transcription factor that is involved in the differentiation of atrial cardiomyocytes. Collectively, these results demonstrate that Hippo signaling defines venous pole cardiomyocyte number by modulating both the number and the identity of the ALPM cells that will populate the atrium of the heart.


Development ◽  
1999 ◽  
Vol 126 (6) ◽  
pp. 1225-1234 ◽  
Author(s):  
M. Campione ◽  
H. Steinbeisser ◽  
A. Schweickert ◽  
K. Deissler ◽  
F. van Bebber ◽  
...  

Left-right asymmetry in vertebrates is controlled by activities emanating from the left lateral plate. How these signals get transmitted to the forming organs is not known. A candidate mediator in mouse, frog and zebrafish embryos is the homeobox gene Pitx2. It is asymmetrically expressed in the left lateral plate mesoderm, tubular heart and early gut tube. Localized Pitx2 expression continues when these organs undergo asymmetric looping morphogenesis. Ectopic expression of Xnr1 in the right lateral plate induces Pitx2 transcription in Xenopus. Misexpression of Pitx2 affects situs and morphology of organs. These experiments suggest a role for Pitx2 in promoting looping of the linear heart and gut.


Development ◽  
2000 ◽  
Vol 127 (19) ◽  
pp. 4105-4113
Author(s):  
M. Schmidt ◽  
M. Tanaka ◽  
A. Munsterberg

The developmental signals that govern cell specification and differentiation in vertebrate somites are well understood. However, little is known about the downstream signalling pathways involved. We have shown previously that a combination of Shh protein and Wnt1 or Wnt3a-expressing fibroblasts is sufficient to activate skeletal muscle-specific gene expression in somite explants. Here, we have examined the molecular mechanisms by which the Wnt-mediated signal acts on myogenic precursor cells. We show that chick frizzled 1 (Fz1), beta-catenin and Lef1 are expressed during somitogenesis. Lef1 and beta-catenin transcripts become restricted to the developing myotome. Furthermore, beta-catenin is expressed prior to the time at which MyoD transcripts can be detected. Expression of beta-catenin mRNA is regulated by positive and negative signals derived from neural tube, notochord and lateral plate mesoderm. These signals include Bmp4, Shh and Wnt1/Wnt3a itself. In somite explants, Fz1, beta-catenin and Lef1 are expressed prior to activation of myogenesis in response to Shh and Wnt signals. Thus, our data show that a combination of Shh and Wnt1 upregulates expression of Wnt pathway components in developing somites prior to myogenesis. Thus, Wnt1 could act through beta-catenin on cells in the myotome.


Sign in / Sign up

Export Citation Format

Share Document