Altered sacral neural crest development in Pax3 spina bifida mutants underlies deficits of bladder innervation and function

Author(s):  
Karen K. Deal ◽  
Anoop S. Chandrashekar ◽  
M. Makenzie Beaman ◽  
Meagan C. Branch ◽  
Dennis P. Buehler ◽  
...  
2014 ◽  
Vol 132 ◽  
pp. 38-43 ◽  
Author(s):  
Paola Betancur ◽  
Marcos Simões-Costa ◽  
Tatjana Sauka-Spengler ◽  
Marianne E. Bronner

2011 ◽  
Vol 356 (1) ◽  
pp. 196
Author(s):  
Bridget Jacques-Fricke ◽  
Laura S. Gammill

Development ◽  
1989 ◽  
Vol 107 (3) ◽  
pp. 453-463 ◽  
Author(s):  
K.P. Steel ◽  
C. Barkway

The stria vascularis of the mammalian cochlea is composed primarily of three types of cells. Marginal cells line the lumen of the cochlear duct and are of epithelial origin. Basal cells also form a continuous layer and they may be mesodermal or derived from the neural crest. Intermediate cells are melanocyte-like cells, presumably derived from the neural crest, and are scattered between the marginal and basal cell layers. The marginal cells form extensive interdigitations with the basal and intermediate cells in the normal adult stria. The stria also contains a rich supply of blood vessels. We investigated the role of melanocytes in the stria vascularis by studying its development in a mouse mutant, viable dominant spotting, which is known to have a primary neural crest defect leading to an absence of recognisable melanocytes in the skin. Melanocytes were not found in the stria of most of the mutants examined, and from about 6 days of age onwards a reduced amount of interdigitation amongst the cells of the stria was observed. These ultrastructural anomalies were associated with strial dysfunction. In the normal adult mammal, the stria produces an endocochlear potential (EP), a resting dc potential in the endolymph in the cochlear duct, which in mice is normally about +100 mV. In our control mice, EP rose to adult levels between 6 and 16 days after birth. In most of the mutants we studied, EP was close to zero at all ages from 6 to 20 days. Melanocyte-like cells appear to be vital for normal stria vascularis development and function. They may be necessary to facilitate the normal process of interdigitation between marginal and basal cell processes at a particular stage during development, and the lack of adequate interdigitation in the mutants may be the cause of their strial dysfunction. Alternatively, melanocytes may have some direct, essential role in the production of an EP by the stria. Melanocytes may be important both for normal strial development and for the production of the EP. We believe this is the clearest demonstration yet of a role for migratory melanocytes other than their role in pigmentation.


2019 ◽  
Vol 69 ◽  
pp. 176-189 ◽  
Author(s):  
Yuqi Yan ◽  
Xiao-tan Zhang ◽  
Guang Wang ◽  
Xin Cheng ◽  
Yu Yan ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (12) ◽  
pp. e115165 ◽  
Author(s):  
Zuming Zhang ◽  
Yu Shi ◽  
Shuhua Zhao ◽  
Jiejing Li ◽  
Chaocui Li ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Shashank Gandhi ◽  
Erica J Hutchins ◽  
Krystyna Maruszko ◽  
Jong H Park ◽  
Matthew Thomson ◽  
...  

During gastrulation, neural crest cells are specified at the neural plate border, as characterized by Pax7 expression. Using single-cell RNA sequencing coupled with high-resolution in situ hybridization to identify novel transcriptional regulators, we show that chromatin remodeler Hmga1 is highly expressed prior to specification and maintained in migrating chick neural crest cells. Temporally controlled CRISPR-Cas9-mediated knockouts uncovered two distinct functions of Hmga1 in neural crest development. At the neural plate border, Hmga1 regulates Pax7-dependent neural crest lineage specification. At premigratory stages, a second role manifests where Hmga1 loss reduces cranial crest emigration from the dorsal neural tube independent of Pax7. Interestingly, this is rescued by stabilized ß-catenin, thus implicating Hmga1 as a canonical Wnt activator. Together, our results show that Hmga1 functions in a bimodal manner during neural crest development to regulate specification at the neural plate border, and subsequent emigration from the neural tube via canonical Wnt signaling.


Sign in / Sign up

Export Citation Format

Share Document