Connexin 26 expression prevents down-regulation of barrier and fence functions of tight junctions by Na+/K+-ATPase inhibitor ouabain in human airway epithelial cell line Calu-3

2006 ◽  
Vol 312 (19) ◽  
pp. 3847-3856 ◽  
Author(s):  
Mitsuru Go ◽  
Takashi Kojima ◽  
Ken-ichi Takano ◽  
Masaki Murata ◽  
Junichi Koizumi ◽  
...  
2001 ◽  
Vol 280 (1) ◽  
pp. L127-L133 ◽  
Author(s):  
S. Tavakoli ◽  
M. J. Cowan ◽  
T. Benfield ◽  
C. Logun ◽  
J. H. Shelhamer

Human airway epithelial cell release of interleukin (IL)-6 in response to lipid mediators was studied in an airway cell line (BEAS-2B). Prostaglandin (PG) E2(10−7M) treatment caused an increase in IL-6 release at 2, 4, 8, and 24 h. IL-6 release into the culture medium at 24 h was 3,396 ± 306 vs. 1,051 ± 154 pg/ml (PGE2-treated cells vs. control cells). PGE2(10−7to 10−10M) induced a dose-related increase in IL-6 release at 24 h. PGF2α(10−6M) treatment caused a similar effect to that of PGE2(10−7M). PGE2analogs with relative selectivity for PGE2receptor subtypes were studied. Sulprostone, a selective agonist for the EP-3 receptor subtype had no effect on IL-6 release. 11-Deoxy-16,16-dimethyl-PGE2, an EP-2/4 agonist, and 17-phenyl trinor PGE2, an agonist selective for the EP-1 > EP-3 receptor subtype (10−6to 10−8M), caused dose-dependent increases in IL-6 release. 8-Bromo-cAMP treatment resulted in dose-related increases in IL-6 release. RT-PCR of BEAS-2B cell mRNA demonstrated mRNA for EP-1, EP-2, and EP-4 receptors. After PGE2treatment, increases in IL-6 mRNA were noted at 4 and 18 h. Therefore, PGE2increases airway epithelial cell IL-6 production and release.


2009 ◽  
Vol 149 (1) ◽  
pp. 77-82 ◽  
Author(s):  
Takahito Chiba ◽  
Shigeharu Ueki ◽  
Wataru Ito ◽  
Hikari Kato ◽  
Masahide Takeda ◽  
...  

mSphere ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Yinghui Rong ◽  
Jennifer Westfall ◽  
Dylan Ehrbar ◽  
Timothy LaRocca ◽  
Nicholas J. Mantis

ABSTRACTInhalation of ricin toxin is associated with the onset of acute respiratory distress syndrome (ARDS), characterized by hemorrhage, inflammatory exudates, and tissue edema, as well as the nearly complete destruction of the lung epithelium. Here we report that the Calu-3 human airway epithelial cell line is relatively impervious to the effects of ricin, with little evidence of cell death even upon exposure to microgram amounts of toxin. However, the addition of exogenous solubletumornecrosisfactor (TNF)-relatedapoptosis-inducingligand (TRAIL; CD253) dramatically sensitized Calu-3 cells to ricin-induced apoptosis. Calu-3 cell killing in response to ricin and TRAIL exposure was partially inhibited by caspase-8 and caspase-3/7 inhibitors, consistent with involvement of extrinsic apoptotic pathways in cell death. We employed nCounter Technology to define the transcriptional response of Calu-3 cells to ricin, TRAIL, and the combination of ricin plus TRAIL. An array of genes associated with inflammation and cell death were significantly upregulated upon treatment with ricin toxin and were further amplified upon addition of TRAIL. Of particular note was interleukin-6 (IL-6), whose expression in Calu-3 cells increased 300-fold upon ricin treatment and more than 750-fold upon ricin and TRAIL treatment. IL-6 secretion by Calu-3 cells was confirmed by cytometric bead array analysis. On the basis of these finding, we speculate that the severe airway epithelial cell damage observed in animal models following ricin exposure is a result of a positive-feedback loop driven by proinflammatory cytokines such as TRAIL and IL-6.IMPORTANCERicin toxin is a biothreat agent that is particularly damaging to lung tissue following inhalation. A hallmark of ricin exposure is widespread inflammation and concomitant destruction of the airway epithelium. In this study, we investigated the possible interaction between ricin and known proinflammatory cytokines associated with lung tissue. Using an established human airway epithelial cell line, we demonstrate that epithelial cell killing by ricin is significantly enhanced in the presence of the proinflammatory cytokine known as TRAIL (CD253). Moreover, epithelial cells that are simultaneously exposed to ricin and TRAIL produced large amounts of secondary proinflammatory signals, including IL-6, which in the context of the lung would be expected to exacerbate toxin-induced tissue damage. Our results suggest that therapies designed to neutralize proinflammatory cytokines such as TRAIL and IL-6 may limit the bystander damage associated with ricin exposure.


Sign in / Sign up

Export Citation Format

Share Document