Is plasma cortisol response to stress in rainbow trout regulated by catecholamine-induced hyperglycemia?

2014 ◽  
Vol 205 ◽  
pp. 207-217 ◽  
Author(s):  
Manuel Gesto ◽  
Cristina Otero-Rodiño ◽  
Marcos A. López-Patiño ◽  
Jesús M. Míguez ◽  
José L. Soengas ◽  
...  
2014 ◽  
Vol 45 (2) ◽  
pp. 223-234 ◽  
Author(s):  
E. Quillet ◽  
F. Krieg ◽  
N. Dechamp ◽  
C. Hervet ◽  
A. Bérard ◽  
...  

2011 ◽  
Vol 105 (3-4) ◽  
pp. 643-651 ◽  
Author(s):  
Steve Wiseman ◽  
Jith K. Thomas ◽  
Landon McPhee ◽  
Olesya Hursky ◽  
Jason C. Raine ◽  
...  

2013 ◽  
Vol 218 (3) ◽  
pp. 287-297 ◽  
Author(s):  
Barry N Madison ◽  
Patrick T K Woo ◽  
Nicholas J Bernier

Despite clear physiological duress, rainbow trout (Oncorhynchus mykiss) infected with the pathogenic haemoflagellateCryptobia salmositicado not appear to mount a cortisol stress response. Therefore, we hypothesized that the infection suppresses the stress response by inhibiting the key effectors of the hypothalamic–pituitary–interrenal (HPI) axis. To test this, we characterized the basal activity of the HPI axis and the cortisol response to air exposure in saline- and parasite-injected fish. All fish were sampled at 4 and 6 weeks post-injection (wpi). While both the treatment groups had resting plasma cortisol levels, the parasite-infected fish had lower levels of plasma ACTH than the control fish. Relative to the control fish, the infected fish had higher mRNA levels of brain pre-optic area corticotrophin-releasing factor (CRF) and pituitary CRF receptor type 1, no change in pituitary POMC-A1, -A2 and -B gene expression, higher and lower head kidney melanocortin 2 receptor mRNA levels at 4 and 6 wpi respectively and reduced gene expression of key proteins regulating interrenal steroidogenesis: StAR, cytochrome P450scc and 11β-hydroxylase. The parasite-infected fish also had a reduced plasma cortisol response to a 60-s air exposure stressor. Superfusion of the head kidney tissues of the parasite-infected fish led to significantly lower ACTH-stimulated cortisol release rates than that observed in the control fish. These novel findings show that infection of rainbow trout withC. salmositicaresults in complex changes in the transcriptional activity of both central and peripheral regulators of the HPI axis and in a reduction in the interrenal capacity to synthesize cortisol.


2002 ◽  
Vol 173 (1) ◽  
pp. 113-122 ◽  
Author(s):  
AI Turner ◽  
BJ Canny ◽  
RJ Hobbs ◽  
JD Bond ◽  
IJ Clarke ◽  
...  

There are sex differences in the response to stress and in the influence of stress on reproduction which may be due to gonadal steroids but the nature of these differences and the role of the gonads are not understood. We tested the hypotheses that sex and the presence/absence of gonads (gonadal status) will influence the cortisol response to injection of ACTH, insulin-induced hypoglycaemia and isolation/restraint stress, and that sex and gonadal status will influence the secretion of LH in response to isolation/restraint stress. Four groups of sheep were used in each of three experiments: gonad-intact rams, gonadectomised rams, gonad-intact ewes in the mid-luteal phase of the oestrous cycle and gonadectomised ewes. In Experiment 1 (n=4/group), jugular blood samples were collected every 10 min for 6 h; after 3 h, two animals in each group were injected (i.v.) with ACTH and the remaining two animals were injected (i.v.) with saline. Treatments were reversed 5 days later so that every animal received both treatments. Experiment 2 (n=4/group) used a similar schedule except that insulin was injected (i.v.) instead of ACTH. In Experiment 3 (n=5/group), blood samples were collected every 10 min for 16 h on a control day and again 2 weeks later when, after 8 h of sampling, all sheep were isolated and restrained for 8 h. Plasma cortisol was significantly (P<0.05) elevated following injection of ACTH or insulin and during isolation/restraint stress. There were no significant differences between the sexes in the cortisol response to ACTH. Rams had a greater (P<0.05) cortisol response to insulin-induced hypoglycaemia than ewes while ewes had a greater (P<0.05) cortisol response to isolation/restraint stress than rams. There was no effect of gonadal status on these parameters. Plasma LH was suppressed (P<0.05) in gonadectomised animals during isolation/restraint stress but was not affected in gonad-intact animals, and there were no differences between the sexes. Our results show that the sex that has the greater cortisol response to a stressor depends on the stressor imposed and that these sex differences are likely to be at the level of the hypothalamo-pituitary unit rather than at the adrenal gland. Since there was a sex difference in the cortisol response to isolation/restraint, the lack of a sex difference in the response of LH to this stress suggests that glucocorticoids are unlikely to be a major mediator of the stress-induced suppression of LH secretion.


1995 ◽  
Vol 268 (4) ◽  
pp. E623-E629 ◽  
Author(s):  
J. Schwartz ◽  
F. Kleftogiannis ◽  
R. Jacobs ◽  
G. D. Thorburn ◽  
S. R. Crosby ◽  
...  

Adrenocorticotropic hormone (ACTH) is synthesized in the corticotrophs as a precursor, pro-opiomelanocortin (POMC), which is processed via proACTH to ACTH. Both precursors and ACTH are secreted. Although the steroidogenic activity of ACTH is well characterized, that of the precursors is not. This study assessed the capacity of POMC and proACTH to alter cortisol synthesis. POMC and proACTH were prepared by subjecting medium, conditioned by exposure to DMS-79 cells, to Sephadex chromatography, and the bioactivity was assessed in cultured-dissociated ovine adrenal cells. Alone neither POMC (< or = 2.6 nM) nor proACTH (< or = 0.7 nM) showed any consistent acute (6 h) stimulatory or inhibitory action on cortisol in either fetal or adult cells. In contrast, in fetal cells the precursors inhibited steroidogenic response to ACTH-(1-24). POMC at 2.6 nM, but not lower concentrations, decreased the cortisol responses to 0.01, 0.1, and 1 nM ACTH by at least 50%. ProACTH (0.70 and 0.23 nM) decreased the responses to ACTH at 0.01 nM by 89 and 67%, respectively, and at 0.1 nM by 49 and 34%, respectively. At 1 nM ACTH only 0.7 nM proACTH decreased the response to ACTH (by 69%). In contrast, in adult adrenal cells, the precursors did not significantly reduce the response to ACTH (range 0.01-1 nM). Therefore, these data indicate that POMC and proACTH can inhibit the cortisol response to ACTH in fetal adrenal cells, an effect that is concentration dependent. The data suggest that precursors may play a physiological role, possibly regulating fetal plasma cortisol concentrations.


Diabetes ◽  
1968 ◽  
Vol 17 (3) ◽  
pp. 124-126 ◽  
Author(s):  
M. Serio ◽  
B. Tarquini ◽  
P. Contini ◽  
A. Bucalossi ◽  
R. Toccafondi

Sign in / Sign up

Export Citation Format

Share Document