scholarly journals Coarse-grained modeling of RNA 3D structure

Methods ◽  
2016 ◽  
Vol 103 ◽  
pp. 138-156 ◽  
Author(s):  
Wayne K. Dawson ◽  
Maciej Maciejczyk ◽  
Elzbieta J. Jankowska ◽  
Janusz M. Bujnicki
Keyword(s):  
2017 ◽  
Vol 33 (16) ◽  
pp. 2479-2486 ◽  
Author(s):  
Mélanie Boudard ◽  
Dominique Barth ◽  
Julie Bernauer ◽  
Alain Denise ◽  
Johanne Cohen

2021 ◽  
Author(s):  
◽  
Travis Caleb Hurst

Ribonucleic acid (RNA) is a polymeric nucleic acid that is crucial for cellular function, regulating gene expression and encoding/decoding protein/DNA molecules. Recent discoveries of diverse functionality in non-coding RNAs have led to unprecedented demand for RNA 3D structure determination. With current technology, general, accurate prediction of 3D structures for large RNAs from the sequence remains computationally intractable. One of the principal challenges arises from the conformational flexibility of RNA, especially in loop/junction regions, which results in a rugged energy landscape. Several strategies exist to overcome this challenge, including incorporation of efficient experimental information and coarse-grained (CG) modeling to improve computational sampling of the structural ensemble. A second challenge is the inclusion of naturally modified derivatives of canonical RNA nucleotides in structure analysis. Most RNA prediction strategies rely upon the canonical nucleotides (adenine (A), uracil (U), guanine (G), and cytosine (C)), ignoring the effects of modified nucleotides on the structure and system dynamics. In general, RNA molecules contain rigid and flexible structural elements, which can be probed using efficient selective 2'-hydroxyl analyzed by primer extension (SHAPE) experiments. SHAPE experiments selectively modify flexible RNA nucleotides and can be processed to produce a characteristic reactivity profile for an RNA molecule that contains structural information. Incorporation of efficient experimental information, such as SHAPE, in predicting RNA 3D structure is highly desirable for overcoming the current knowledge gap between RNA sequence and 3D structure. In the first project, we introduce a physics-based model, the 3D structure-SHAPE relationship (3DSSR) model, to predict the SHAPE reactivity from the structure and show how this model may be used to sieve SHAPE-compatible structures from a pool of low-energy decoys and refine our predictions. In the second project, we compare 3DSSR performance to that of a convolutional neural network (CNN) trained on the SHAPE data and RNA structures, showing that 3DSSR outperforms the CNN given the limited data available. In the third project, we further improve the 3DSSR model, gaining deeper insights into the SHAPE reaction and biases. In the fourth project, we explore the theory underpinning the iterative simulated CG RNA folding model (IsRNA). In establishing the underlying mechanics driving the success of the model, we were able to clarify and improve the parameterization method while expanding the model interpretation, which should broaden application of the method to other biopolymers, such as protein. We found that the parameterization method follows statistical mechanics principles but also has a Bayesian interpretation. Further, we found that the parameterization process can benefit from application of the principle of maximum entropy, which improves simulation and parameterization efficiency. In the fifth project, we investigate the impact of nucleotide modification on the structure and configurational ensemble of RNA molecules using free energy calculations. By applying modifications to a common RNA hairpin, we estimate the impact on the stability of the structural ensemble, identifying specific interactions that drive changes to the potential of mean force (PMF) and showing the context and modification-dependence of the variable alterations to the structure stability.


Author(s):  
Alexander Eisold ◽  
Dirk Labudde

Micro-pollutants such as 17β-Estradiol (E2) have been detected in different water resources and their negative effects on the environment and organisms have been observed. Aptamers are established as a possible detection tool, but the underlying ligand binding is largely unexplored. In this study, a previously described 35-mer E2-specific aptamer was used to analyse the binding characteristics between E2 and the aptamer with a MD simulation in an aqueous medium. Because there is no 3D structure information available for this aptamer, it was modeled using coarse-grained modeling method. The E2 ligand was positioned inside a potential binding area of the predicted aptamer structure, the complex was used for an 25 ns MD simulation, and the interactions were examined for each time step. We identified E2-specific bases within the interior loop of the aptamer and also demonstrated the influence of frequently underestimated water-mediated hydrogen bonds. The study contributes to the understanding of the behavior of ligands binding with aptamer structure in an aqueous solution. The developed workflow allows generating and examining further appealing ligand-aptamer complexes.


2019 ◽  
Vol 35 (21) ◽  
pp. 4459-4461 ◽  
Author(s):  
Sha Gong ◽  
Chengxin Zhang ◽  
Yang Zhang

Abstract Motivation Comparison of RNA 3D structures can be used to infer functional relationship of RNA molecules. Most of the current RNA structure alignment programs are built on size-dependent scales, which complicate the interpretation of structure and functional relations. Meanwhile, the low speed prevents the programs from being applied to large-scale RNA structural database search. Results We developed an open-source algorithm, RNA-align, for RNA 3D structure alignment which has the structure similarity scaled by a size-independent and statistically interpretable scoring metric. Large-scale benchmark tests show that RNA-align significantly outperforms other state-of-the-art programs in both alignment accuracy and running speed. The major advantage of RNA-align lies at the quick convergence of the heuristic alignment iterations and the coarse-grained secondary structure assignment, both of which are crucial to the speed and accuracy of RNA structure alignments. Availability and implementation https://zhanglab.ccmb.med.umich.edu/RNA-align/. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 116 (3) ◽  
pp. 353a
Author(s):  
Mario Villada-Balbuena ◽  
Mauricio D. Carbajal-Tinoco

2019 ◽  
Vol 151 (16) ◽  
pp. 165101
Author(s):  
Ben-Gong Zhang ◽  
Hua-Hai Qiu ◽  
Jian Jiang ◽  
Jie Liu ◽  
Ya-Zhou Shi

2021 ◽  
Vol 8 ◽  
Author(s):  
Jun Li ◽  
Shi-Jie Chen

The three-dimensional (3D) structures of Ribonucleic acid (RNA) molecules are essential to understanding their various and important biological functions. However, experimental determination of the atomic structures is laborious and technically difficult. The large gap between the number of sequences and the experimentally determined structures enables the thriving development of computational approaches to modeling RNAs. However, computational methods based on all-atom simulations are intractable for large RNA systems, which demand long time simulations. Facing such a challenge, many coarse-grained (CG) models have been developed. Here, we provide a review of CG models for modeling RNA 3D structures, compare the performance of the different models, and offer insights into potential future developments.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 287 ◽  
Author(s):  
Bernhard C. Thiel ◽  
Irene K. Beckmann ◽  
Peter Kerpedjiev ◽  
Ivo L. Hofacker

We present forgi, a Python library to analyze the tertiary structure of RNA secondary structure elements. Our representation of an RNA molecule is centered on secondary structure elements (stems, bulges and loops). By fitting a cylinder to the helix axis, these elements are carried over into a coarse-grained 3D structure representation. Integration with Biopython allows for handling of all-atom 3D information. forgi can deal with a variety of file formats including dotbracket strings, PDB and MMCIF files. We can handle modified residues, missing residues, cofold and multifold structures as well as nucleotide numbers starting at arbitrary positions. We apply this library to the study of stacking helices in junctions and pseudoknots and investigate how far stacking helices in solved experimental structures can divert from coaxial geometries.


2019 ◽  
Author(s):  
Jorge Roel-Touris ◽  
Charleen G. Don ◽  
Rodrigo V. Honorato ◽  
João P.G.L.M Rodrigues ◽  
Alexandre M.J.J. Bonvin

ABSTRACTPredicting the 3D structure of protein interactions remains a challenge in the field of computational structural biology. This is in part due to difficulties in sampling the complex energy landscape of multiple interacting flexible polypeptide chains. Coarse-graining approaches, which reduce the number of degrees of freedom of the system, help address this limitation by smoothing the energy landscape, allowing an easier identification of the global energy minimum. They also accelerate the calculations, allowing to model larger assemblies. Here, we present the implementation of the MARTINI coarse-grained force field for proteins into HADDOCK, our integrative modelling platform. Docking and refinement are performed at the coarse-grained level and the resulting models are then converted back to atomistic resolution through a distance restraints-guided morphing procedure. Our protocol, tested on the largest complexes of the protein docking benchmark 5, shows an overall ~7-fold speed increase compared to standard all-atom calculations, while maintaining a similar accuracy and yielding substantially more near-native solutions. To showcase the potential of our method, we performed simultaneous 7 body docking to model the 1:6 KaiC-KaiB complex, integrating mutagenesis and hydrogen/deuterium exchange data from mass spectrometry with symmetry restraints, and validated the resulting models against a recently published cryo-EM structure.


2014 ◽  
Vol 141 (10) ◽  
pp. 105102 ◽  
Author(s):  
Ya-Zhou Shi ◽  
Feng-Hua Wang ◽  
Yuan-Yan Wu ◽  
Zhi-Jie Tan

Sign in / Sign up

Export Citation Format

Share Document