Mitochondrial vitamin B12-binding proteins in patients with inborn errors of cobalamin metabolism

2007 ◽  
Vol 90 (2) ◽  
pp. 140-147 ◽  
Author(s):  
E. Moras ◽  
A. Hosack ◽  
D. Watkins ◽  
D.S. Rosenblatt
2020 ◽  
Vol 9 (4) ◽  
pp. 990
Author(s):  
Javier De Las Heras ◽  
Ibai Diez ◽  
Antonio Jimenez-Marin ◽  
Alberto Cabrera ◽  
Daniela Ramos-Usuga ◽  
...  

Neuroimaging studies describing brain circuits’ alterations in cobalamin (vitamin B12)-deficient patients are limited and have not been carried out in patients with inborn errors of cobalamin metabolism. The objective of this study was to assess brain functionality and brain circuit alterations in a patient with an ultra-rare inborn error of cobalamin metabolism, methylmalonic aciduria, and homocystinuria due to cobalamin D disease, as compared with his twin sister as a healthy control (HC). We acquired magnetic resonance imaging (including structural, functional, and diffusion images) to calculate brain circuit abnormalities and combined these results with the scores after a comprehensive neuropsychological evaluation. As compared with HC, the patient had severe patterns of damage, such as a 254% increment of ventricular volume, pronounced subcortical and cortical atrophies (mainly at striatum, cingulate cortex, and precuneus), and connectivity alterations at fronto-striato-thalamic circuit, cerebellum, and corpus callosum. In agreement with brain circuit alterations, cognitive deficits existed in attention, executive function, inhibitory control, and mental flexibility. This is the first study that provides the clinical, genetic, neuroanatomical, neuropsychological, and psychosocial characterization of a patient with the cobalamin D disorder, showing functional alterations in central nervous system motor tracts, thalamus, cerebellum, and basal ganglia, that, as far as we know, have not been reported yet in vitamin B12-related disorders.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 743
Author(s):  
Marco Fidaleo ◽  
Stefano Tacconi ◽  
Carolina Sbarigia ◽  
Daniele Passeri ◽  
Marco Rossi ◽  
...  

Vitamin B12 (VitB12) is a naturally occurring compound produced by microorganisms and an essential nutrient for humans. Several papers highlight the role of VitB12 deficiency in bone and heart health, depression, memory performance, fertility, embryo development, and cancer, while VitB12 treatment is crucial for survival in inborn errors of VitB12 metabolism. VitB12 is administrated through intramuscular injection, thus impacting the patients’ lifestyle, although it is known that oral administration may meet the specific requirement even in the case of malabsorption. Furthermore, the high-dose injection of VitB12 does not ensure a constant dosage, while the oral route allows only 1.2% of the vitamin to be absorbed in human beings. Nanocarriers are promising nanotechnology that can enable therapies to be improved, reducing side effects. Today, nanocarrier strategies applied at VitB12 delivery are at the initial phase and aim to simplify administration, reduce costs, improve pharmacokinetics, and ameliorate the quality of patients’ lives. The safety of nanotechnologies is still under investigation and few treatments involving nanocarriers have been approved, so far. Here, we highlight the role of VitB12 in human metabolism and diseases, and the issues linked to its molecule properties, and discuss how nanocarriers can improve the therapy and supplementation of the vitamin and reduce possible side effects and limits.


1976 ◽  
Vol 34 (3) ◽  
pp. 277-283 ◽  
Author(s):  
Huntington F. Willard ◽  
Lalit M. Ambani ◽  
Anita C. Hart ◽  
Maurice J. Mahoney ◽  
Leon E. Rosenberg

1990 ◽  
pp. 607-621
Author(s):  
R. A. H. Surtees ◽  
J. V. Leonard
Keyword(s):  

2020 ◽  
Vol 29 (13) ◽  
pp. 2109-2123 ◽  
Author(s):  
Jennifer L Sloan ◽  
Nathan P Achilly ◽  
Madeline L Arnold ◽  
Jerrel L Catlett ◽  
Trevor Blake ◽  
...  

Abstract Cobalamin C (cblC) deficiency, the most common inborn error of intracellular cobalamin metabolism, is caused by mutations in MMACHC, a gene responsible for the processing and intracellular trafficking of vitamin B12. This recessive disorder is characterized by a failure to metabolize cobalamin into adenosyl- and methylcobalamin, which results in the biochemical perturbations of methylmalonic acidemia, hyperhomocysteinemia and hypomethioninemia caused by the impaired activity of the downstream enzymes, methylmalonyl-CoA mutase and methionine synthase. Cobalamin C deficiency can be accompanied by a wide spectrum of clinical manifestations, including progressive blindness, and, in mice, manifests with very early embryonic lethality. Because zebrafish harbor a full complement of cobalamin metabolic enzymes, we used genome editing to study the loss of mmachc function and to develop the first viable animal model of cblC deficiency. mmachc mutants survived the embryonic period but perished in early juvenile life. The mutants displayed the metabolic and clinical features of cblC deficiency including methylmalonic acidemia, severe growth retardation and lethality. Morphologic and metabolic parameters improved when the mutants were raised in water supplemented with small molecules used to treat patients, including hydroxocobalamin, methylcobalamin, methionine and betaine. Furthermore, mmachc mutants bred to express rod and/or cone fluorescent reporters, manifested a retinopathy and thin optic nerves (ON). Expression analysis using whole eye mRNA revealed the dysregulation of genes involved in phototransduction and cholesterol metabolism. Zebrafish with mmachc deficiency recapitulate the several of the phenotypic and biochemical features of the human disorder, including ocular pathology, and show a response to established treatments.


Sign in / Sign up

Export Citation Format

Share Document