Phylogenomic analyses resolve relationships among garter snakes (Thamnophis: Natricinae: Colubridae) and elucidate biogeographic history and morphological evolution

Author(s):  
Joshua M. Hallas ◽  
Thomas L. Parchman ◽  
Chris R. Feldman
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Kole F. Adelalu ◽  
Xu Zhang ◽  
Xiaojian Qu ◽  
Jacob B. Landis ◽  
Jun Shen ◽  
...  

Investigating the biogeographical disjunction of East Asian and North American flora is key to understanding the formation and dynamics of biodiversity in the Northern Hemisphere. The small Cupressaceae genus Thuja, comprising five species, exhibits a typical disjunct distribution in East Asia and North America. Owing to obscure relationships, the biogeographical history of the genus remains controversial. Here, complete plastomes were employed to investigate the plastome evolution, phylogenetic relationships, and biogeographic history of Thuja. All plastomes of Thuja share the same gene content arranged in the same order. The loss of an IR was evident in all Thuja plastomes, and the B-arrangement as previously recognized was detected. Phylogenomic analyses resolved two sister pairs, T. standishii-T. koraiensis and T. occidentalis-T. sutchuenensis, with T. plicata sister to T. occidentalis-T. sutchuenensis. Molecular dating and biogeographic results suggest the diversification of Thuja occurred in the Middle Miocene, and the ancestral area of extant species was located in northern East Asia. Incorporating the fossil record, we inferred that Thuja likely originated from the high-latitude areas of North America in the Paleocene with a second diversification center in northern East Asia. The current geographical distribution of Thuja was likely shaped by dispersal events attributed to the Bering Land Bridge in the Miocene and subsequent vicariance events accompanying climate cooling. The potential effect of extinction may have profound influence on the biogeographical history of Thuja.


2017 ◽  
Vol 284 (1854) ◽  
pp. 20170300 ◽  
Author(s):  
John D. McVay ◽  
Andrew L. Hipp ◽  
Paul S. Manos

Oaks ( Quercus L.) have long been suspected to hybridize in nature, and widespread genetic exchange between morphologically defined species is well documented in two- to six-species systems, but the phylogenetic consequences of hybridization in oaks have never been demonstrated in a phylogenetically diverse sample. Here, we present phylogenomic analyses of a ca 30 Myr clade that strongly support morphologically defined species and the resolution of novel clades of white oaks; however, historical hybridization across clade boundaries is detectable and, undiagnosed, would obscure the imprint of biogeographic history in the phylogeny. Phylogenetic estimation from restriction-site-associated DNA sequencing data for 156 individuals representing 81 species supports two successive intercontinental disjunctions of white oaks: an early vicariance between the Eurasian and American white oaks, and a second, independent radiation represented by two relictual species. A suite of subsampled and partitioned analyses, however, supports a more recent divergence of the Eurasian white oaks from within the American white oaks and suggests that historic introgression between the Eurasian white oaks and a now-relictual lineage biases concatenated phylogenetic estimates. We demonstrate how divergence and reticulation both influence our understanding of the timing and nature of diversification and global colonization in these ecologically and economically important taxa.


2020 ◽  
Vol 126 (2) ◽  
pp. 245-260
Author(s):  
Yudai Okuyama ◽  
Nana Goto ◽  
Atsushi J Nagano ◽  
Masaki Yasugi ◽  
Goro Kokubugata ◽  
...  

Abstract Background and Aims The genus Asarum sect. Heterotropa (Aristolochiaceae) probably experienced rapid diversification into 62 species centred on the Japanese Archipelago and Taiwan, providing an ideal model for studying island adaptive radiation. However, resolving the phylogeny of this plant group using Sanger sequencing-based approaches has been challenging. To uncover the radiation history of Heterotropa, we employed a phylogenomic approach using double-digested RAD-seq (ddRAD-seq) to yield a sufficient number of phylogenetic signals and compared its utility with that of the Sanger sequencing-based approach. Methods We first compared the performance of phylogenetic analysis based on the plastid matK and trnL–F regions and nuclear ribosomal internal transcribed spacer (nrITS), and phylogenomic analysis based on ddRAD-seq using a reduced set of the plant materials (83 plant accessions consisting of 50 species, one subspecies and six varieties). We also conducted more thorough phylogenomic analyses including the reconstruction of biogeographic history using comprehensive samples of 135 plant accessions consisting of 54 species, one subspecies, nine varieties of Heterotropa and six outgroup species. Key Results Phylogenomic analyses of Heterotropa based on ddRAD-seq were superior to Sanger sequencing-based approaches and resulted in a fully resolved phylogenetic tree with strong support for 72.0–84.8 % (depending on the tree reconstruction methods) of the branches. We clarified the history of Heterotropa radiation and found that A. forbesii, the only deciduous Heterotropa species native to mainland China, is sister to the evergreen species (core Heterotropa) mostly distributed across the Japanese Archipelago and Taiwan. Conclusions The core Heterotropa group was divided into nine subclades, each of which had a narrow geographic distribution. Moreover, most estimated dispersal events (22 out of 24) were between adjacent areas, indicating that the range expansion has been geographically restricted throughout the radiation history. The findings enhance our understanding of the remarkable diversification of plant lineages in the Japanese Archipelago and Taiwan.


Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 549 ◽  
Author(s):  
Andrew J. Helmstetter ◽  
Suzanne Mogue Kamga ◽  
Kevin Bethune ◽  
Thea Lautenschläger ◽  
Alexander Zizka ◽  
...  

Palms are conspicuous floristic elements across the tropics. In continental Africa, even though there are less than 70 documented species, they are omnipresent across the tropical landscape. The genus Raphia has 20 accepted species in Africa and one species endemic to the Neotropics. It is the most economically important genus of African palms with most of its species producing food and construction material. Raphia is divided into five sections based on inflorescence morphology. Nevertheless, the taxonomy of Raphia is problematic with no intra-generic phylogenetic study available. We present a phylogenetic study of the genus using a targeted exon capture approach sequencing of 56 individuals representing 18 out of the 21 species. Our results recovered five well supported clades within the genus. Three sections correspond to those based on inflorescence morphology. R. regalis is strongly supported as sister to all other Raphia species and is placed into a newly described section: Erectae. Overall, morphological based identifications agreed well with our phylogenetic analyses, with 12 species recovered as monophyletic based on our sampling. Species delimitation analyses recovered 17 or 23 species depending on the confidence level used. Species delimitation is especially problematic in the Raphiate and Temulentae sections. In addition, our clustering analysis using SNP data suggested that individual clusters matched geographic distribution. The Neotropical species R. taedigera is supported as a distinct species, rejecting the hypothesis of a recent introduction into South America. Our analyses support the hypothesis that the Raphia individuals from Madagascar are potentially a distinct species different from the widely distributed R. farinifera. In conclusion, our results support the infra generic classification of Raphia based on inflorescence morphology, which is shown to be phylogenetically useful. Classification and species delimitation within sections remains problematic even with our phylogenomic approach. Certain widely distributed species could potentially contain cryptic species. More in-depth studies should be undertaken using morphometrics, increased sampling, and more variable markers. Our study provides a robust phylogenomic framework that enables further investigation on the biogeographic history, morphological evolution, and other eco-evolutionary aspects of this charismatic, socially, and economically important palm genus.


2020 ◽  
Author(s):  
Andrew J. Helmstetter ◽  
Suzanne Mogue Kamga ◽  
Kevin Bethune ◽  
Thea Lautenschläger ◽  
Alexander Zizka ◽  
...  

AbstractPalms are conspicuous floristic elements across the tropics. In continental Africa, even though there are less than 70 documented species, they are omnipresent across the tropical landscape. The genus Raphia has 20 accepted species in Africa and one species endemic to the Neotropics. It is the most economically important genus of African palms with most of its species producing food and construction material. Raphia is divided into five sections based on inflorescence morphology. Nevertheless, the taxonomy of Raphia is problematic with no intra-generic phylogenetic study available. We present a phylogenetic study of the genus using a targeted exon capture approach sequencing of 56 individuals representing 18 out of the 21 species. Our results recovered five well supported clades within the genus. Three sections correspond to those based on inflorescence morphology. R. regalis is strongly supported as sister to all other Raphia species and is placed into a newly described section: Erectae. Overall, morphological based identifications agreed well with our phylogenetic analyses, with 12 species recovered as monophyletic based on our sampling. Species delimitation analyses recovered 17 or 23 species depending on the confidence level used. Species delimitation is especially problematic in the Raphiate and Temulentae sections. In addition, our clustering analysis using SNP data suggested that individual clusters matched geographic distribution. The Neotropical species R. taedigera is supported as a distinct species, rejecting the hypothesis of a recent introduction into South America. Our analyses support the hypothesis that the Raphia individuals from Madagascar are potentially a distinct species different from the widely distributed R. farinifera. In conclusion, our results support the infra generic classification of Raphia based on inflorescence morphology, which is shown to be phylogenetically useful. Classification and species delimitation within sections remains problematic even with our phylogenomic approach. Certain widely distributed species could potentially contain cryptic species. More in-depth studies should be undertaken using morphometrics, increased sampling and more variable markers. Our study provides a robust phylogenomic framework that enables further investigation on the biogeographic history, morphological evolution and other eco-evolutionary aspects of this charismatic, socially and economically important palm genus.


2020 ◽  
Vol 111 (1) ◽  
pp. 119-137 ◽  
Author(s):  
Matthew L Knope ◽  
M Renee Bellinger ◽  
Erin M Datlof ◽  
Timothy J Gallaher ◽  
Melissa A Johnson

Abstract Hawaiian plant radiations often result in lineages with exceptionally high species richness and extreme morphological and ecological differentiation. However, they typically display low levels of genetic variation, hindering the use of classic DNA markers to resolve their evolutionary histories. Here we utilize a phylogenomic approach to generate the first generally well-resolved phylogenetic hypothesis for the evolution of the Hawaiian Bidens (Asteraceae) adaptive radiation, including refined initial colonization and divergence time estimates. We sequenced the chloroplast genome (plastome) and nuclear ribosomal complex for 18 of the 19 endemic species of Hawaiian Bidens and 4 outgroup species. Phylogenomic analyses based on the concatenated dataset (plastome and nuclear) resulted in identical Bayesian and Maximum Likelihood trees with high statistical support at most nodes. Estimates from dating analyses were similar across datasets, with the crown group emerging ~1.76–1.82 Mya. Biogeographic analyses based on the nuclear and concatenated datasets indicated that colonization within the Hawaiian Islands generally followed the progression rule with 67–80% of colonization events from older to younger islands, while only 53% of events followed the progression rule in the plastome analysis. We find strong evidence for nuclear-plastome conflict indicating a potentially important role for hybridization in the evolution of the group. However, incomplete lineage sorting cannot be ruled out due to the small number of independent loci analyzed. This study contributes new insights into species relationships and the biogeographic history of the explosive Hawaiian Bidens adaptive radiation.


Author(s):  
William A. Heeschen

Two new morphological measurements based on digital image analysis, CoContinuity and CoContinuity Balance, have been developed and implemented for quantitative measurement of morphology in polymer blends. The morphology of polymer blends varies with phase ratio, composition and processing. A typical morphological evolution for increasing phase ratio of polymer A to polymer B starts with discrete domains of A in a matrix of B (A/B < 1), moves through a cocontinuous distribution of A and B (A/B ≈ 1) and finishes with discrete domains of B in a matrix of A (A/B > 1). For low phase ratios, A is often seen as solid convex particles embedded in the continuous B phase. As the ratio increases, A domains begin to evolve into irregular shapes, though still recognizable as separate domains. Further increase in the phase ratio leads to A domains which extend into and surround the B phase while the B phase simultaneously extends into and surrounds the A phase.


Sign in / Sign up

Export Citation Format

Share Document