phase ratio
Recently Published Documents


TOTAL DOCUMENTS

204
(FIVE YEARS 49)

H-INDEX

26
(FIVE YEARS 3)

Author(s):  
Jingyi Wang ◽  
Lili Cai ◽  
Zhengqi Liang ◽  
Yue Zhu ◽  
Zhongwei Cao ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1449
Author(s):  
Anoj Winston Gladius ◽  
Simon Höving ◽  
Mehdy Mendelawi ◽  
Harikrishna Sreekumar Sheeba ◽  
David W. Agar

Liquid–liquid slug flow in a microcapillary, with its improved heat and mass transfer properties and narrow residence time, plays a vital role in process intensification. Knowledge of the flow properties in microchannels along variables’ controllability (e.g., phase ratio, slug length along with classical variables, such as pressure, temperature, and flow velocity) during operation is crucial. This work aids in this by using magnetofluidics to manipulate these parameters. A ferrofluid with reproducible properties is produced and, together with another phase, stable slug flow is generated. Micro-gear pumps and syringe pumps, with their traditional mechanical components, result in parts degrading over time due to fatigue caused by pressure differentials and corrosive chemicals. The microflow is also disturbed by the invasive nature of these pumps. A considerably energy-efficient, non-invasive alternative, with reduced mechanical interfacing is suggested in this work. It uses magnetic gradients to manipulate two-phase flow, one of which is a magnetically active phase. Conveying concepts using permanent magnets in the immediate vicinity of the flow are investigated. To operate this pump continuously and to be able to regulate the phase ratio, an electromagnetic non-invasive valve is developed. Phase separation is also carried out with an existing decanter design, modified using electromagnetism to work without a selective membrane, usually necessary for phase separation at this scale. This pump is then compared with similar pumps developed in the past.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Yunhua Luo ◽  
Ogheneriobororue Amromanoh

Background. Bone mineral density is widely used by clinicians for screening osteoporosis and assessing bone strength. However, its effectiveness has been reported unsatisfactory. In this study, it is demonstrated that bone organic-inorganic phase ratio is a fundamental determinant of bone material quality measured by stiffness, strength, and toughness. Methods and Results. Two-hundred standard bone specimens were fabricated from bovine legs, with a specialized manufacturing method that was designed to reduce the effect of bone anisotropy. Bone mechanical properties of the specimens, including Young’s modulus, yield stress, peak stress, and energy-to-failure, were measured by mechanical testing. Organic and inorganic mass contents of the specimens were then determined by bone ashing. Bone density and organic-inorganic phase ratio in the specimens were calculated. Statistical methods were applied to study relationships between the measured mechanical properties and the organic-inorganic phase ratios. Statistical characteristics of organic-inorganic phase ratios in the specimens with top material quality were investigated. Bone organic-inorganic phase ratio had strong Spearman correlation with bone material properties. Bone specimens that had the highest material quality had a very narrow scope of organic-inorganic phase ratio, which could be considered as the “optimal” ratio among the tested specimens. Conclusion. Bone organic-inorganic phase ratio is a fundamental determinant of bone material quality. There may exist an “optimal” ratio for the bone to achieve top material quality. Deviation from the “optimal” ratio is probably the fundamental cause of various bone diseases. This study suggests that bone organic-inorganic phase ratio should be considered in clinical assessment of fracture risk.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4132
Author(s):  
Marton Benke ◽  
Adrienn Hlavacs ◽  
Ferenc Kristaly ◽  
Mate Sepsi ◽  
Valeria Mertinger

The volume fraction of austenite (γ), ε martensite and α′ martensite is of key importance in the research of TWIP/TRIP steels. When mechanical loading is involved, the crystallographic texture also develops, which complicates X-ray diffraction-based phase ratio determination. The problem is more pronounced when only a couple, or only one Bragg-reflection can be measured. A solution for such cases is to determine the ratio of the phases based on the pole distribution function of a selected Bragg-reflection of the present phases. In this manuscript, this method is reconsidered for and applied to non-transmittable bulk specimens for the first time in the reflection mode of XRD pole figure measurements. First, the method was applied to a series of γ–α′ powder mixtures. The results were compared to those obtained by the Rietveld method. Afterwards, the technique was applied to strongly textured, bulk TWIP/TRIP steel specimens which were tensile tested at different temperatures. It was shown that the results of the presented method were close to those of the Rietveld technique in the case of powder mixtures. The results of the tensile-tested steels revealed that the α′ content increases with decreasing test temperatures, and the variation of the α′ ratio correlates very well with the ultimate tensile strength versus the temperature, confirming the contribution of the α′ content to the strength of TWIP/TRIP steels.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3426
Author(s):  
Shuwan Cui ◽  
Shuwen Pang ◽  
Dangqing Pang ◽  
Zhiqing Zhang

In this paper, 8.0 mm thickness 2205 duplex stainless steel (DSS) workpieces were welded with a keyhole tungsten inert gas (K-TIG) welding system under different welding speeds. After welding, the morphologies of the welds under different welding speed conditions were compared and analyzed. The microstructure, two-phase ratio of austenite/ferrite, and grain boundary characteristics of the welded joints were studied, and the microhardness and tensile properties of the welded joints were tested. The results show that the welding speed has a significant effect on the weld morphology, the two-phase ratio, grain boundary misorientation angle (GBMA), and mechanical properties of the welded joint. When the welding speed increased from 280 mm/min to 340 mm/min, the austenite content and the two-phase ratio in the weld metal zone (WMZ) decreased. However, the ferrite content in the WMZ increased. The proportion of the Σ3 coincident site lattice grain boundary (CSLGB) decreased as the welding speed increased, which has no significant effect on the tensile strength of welded joints. The microhardness of the WMZ and the tensile strength of the welded joint gradually increased when the welding speed was 280–340 mm/min. The 2205 DSS K-TIG welded joints have good plasticity.


Sign in / Sign up

Export Citation Format

Share Document