scholarly journals Unravelling the Phylogenomic Relationships of the Most Diverse African Palm Genus Raphia (Calamoideae, Arecaceae)

2020 ◽  
Author(s):  
Andrew J. Helmstetter ◽  
Suzanne Mogue Kamga ◽  
Kevin Bethune ◽  
Thea Lautenschläger ◽  
Alexander Zizka ◽  
...  

AbstractPalms are conspicuous floristic elements across the tropics. In continental Africa, even though there are less than 70 documented species, they are omnipresent across the tropical landscape. The genus Raphia has 20 accepted species in Africa and one species endemic to the Neotropics. It is the most economically important genus of African palms with most of its species producing food and construction material. Raphia is divided into five sections based on inflorescence morphology. Nevertheless, the taxonomy of Raphia is problematic with no intra-generic phylogenetic study available. We present a phylogenetic study of the genus using a targeted exon capture approach sequencing of 56 individuals representing 18 out of the 21 species. Our results recovered five well supported clades within the genus. Three sections correspond to those based on inflorescence morphology. R. regalis is strongly supported as sister to all other Raphia species and is placed into a newly described section: Erectae. Overall, morphological based identifications agreed well with our phylogenetic analyses, with 12 species recovered as monophyletic based on our sampling. Species delimitation analyses recovered 17 or 23 species depending on the confidence level used. Species delimitation is especially problematic in the Raphiate and Temulentae sections. In addition, our clustering analysis using SNP data suggested that individual clusters matched geographic distribution. The Neotropical species R. taedigera is supported as a distinct species, rejecting the hypothesis of a recent introduction into South America. Our analyses support the hypothesis that the Raphia individuals from Madagascar are potentially a distinct species different from the widely distributed R. farinifera. In conclusion, our results support the infra generic classification of Raphia based on inflorescence morphology, which is shown to be phylogenetically useful. Classification and species delimitation within sections remains problematic even with our phylogenomic approach. Certain widely distributed species could potentially contain cryptic species. More in-depth studies should be undertaken using morphometrics, increased sampling and more variable markers. Our study provides a robust phylogenomic framework that enables further investigation on the biogeographic history, morphological evolution and other eco-evolutionary aspects of this charismatic, socially and economically important palm genus.

Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 549 ◽  
Author(s):  
Andrew J. Helmstetter ◽  
Suzanne Mogue Kamga ◽  
Kevin Bethune ◽  
Thea Lautenschläger ◽  
Alexander Zizka ◽  
...  

Palms are conspicuous floristic elements across the tropics. In continental Africa, even though there are less than 70 documented species, they are omnipresent across the tropical landscape. The genus Raphia has 20 accepted species in Africa and one species endemic to the Neotropics. It is the most economically important genus of African palms with most of its species producing food and construction material. Raphia is divided into five sections based on inflorescence morphology. Nevertheless, the taxonomy of Raphia is problematic with no intra-generic phylogenetic study available. We present a phylogenetic study of the genus using a targeted exon capture approach sequencing of 56 individuals representing 18 out of the 21 species. Our results recovered five well supported clades within the genus. Three sections correspond to those based on inflorescence morphology. R. regalis is strongly supported as sister to all other Raphia species and is placed into a newly described section: Erectae. Overall, morphological based identifications agreed well with our phylogenetic analyses, with 12 species recovered as monophyletic based on our sampling. Species delimitation analyses recovered 17 or 23 species depending on the confidence level used. Species delimitation is especially problematic in the Raphiate and Temulentae sections. In addition, our clustering analysis using SNP data suggested that individual clusters matched geographic distribution. The Neotropical species R. taedigera is supported as a distinct species, rejecting the hypothesis of a recent introduction into South America. Our analyses support the hypothesis that the Raphia individuals from Madagascar are potentially a distinct species different from the widely distributed R. farinifera. In conclusion, our results support the infra generic classification of Raphia based on inflorescence morphology, which is shown to be phylogenetically useful. Classification and species delimitation within sections remains problematic even with our phylogenomic approach. Certain widely distributed species could potentially contain cryptic species. More in-depth studies should be undertaken using morphometrics, increased sampling, and more variable markers. Our study provides a robust phylogenomic framework that enables further investigation on the biogeographic history, morphological evolution, and other eco-evolutionary aspects of this charismatic, socially, and economically important palm genus.


2016 ◽  
Vol 29 (3) ◽  
pp. 185 ◽  
Author(s):  
Charles S. P. Foster ◽  
David J. Cantrill ◽  
Elizabeth A. James ◽  
Anna E. Syme ◽  
Rebecca Jordan ◽  
...  

Pimelea Banks & Sol. ex Gaertn. is a genus of flowering plants comprising an estimated 90 species in Australia and ~35 species in New Zealand. The genus is economically important, with the inflorescences of some species having floricultural applications, and the presence of toxic compounds in several species proving poisonous to livestock. Pimelea grows in a variety of habitats ranging from arid to alpine, suggesting a complicated biogeographic history. The relationships within Pimelea remain largely uncertain, despite previous attempts at clarification using molecular phylogenetics. However, it is clear that Pimelea is closely related to Thecanthes Wikstr., with the two genera comprising the subtribe Pimeleinae. We used Bayesian and maximum-likelihood phylogenetic analyses of four plastid markers (matK, rbcL, rps16, trnL–F) and one nuclear ribosomal marker (ITS) to examine the evolutionary relationships within Pimeleinae. We found strong support for the monophyly of Pimeleinae but, similar to previous studies, Pimelea was paraphyletic with respect to Thecanthes. Our results also indicated that P. longiflora R.Br. subsp. longiflora and P. longiflora subsp. eyrei (F.Muell.) Rye are best considered as distinct species. Therefore, we reduce Thecanthes to synonymy with Pimelea, making the necessary new combination Pimelea filifolia (Rye) C.S.P.Foster et M.J.Henwood (previously Thecanthes filifolia Rye), and also reinstate Pimelea eyrei F.Muell.


2021 ◽  
Vol 45 ◽  
pp. e73217
Author(s):  
Isaac Garrido Benavent

The present work represents the first comprehensive phylogenetic study of the dothideomycete genus Seynesiella. The genus belongs into the family Cylindrosympodiaceae within the order Venturiales, based on a phylogeny reconstructed with five loci. The high genetic diversity found within the type species, S. juniperi, points towards cryptic speciation, with up to five distinct species that might be associated to different Juniperus hosts. Combining phylogenetics and multi-locus delimitation analyses, together with more detailed measurements of ascospores, will be fundamental for a better understanding of species boundaries and the biogeographic history of the delimited species, as well as for revealing more specific fungal-plant association patterns.


Zootaxa ◽  
2017 ◽  
Vol 4286 (1) ◽  
pp. 116
Author(s):  
MARCO T. NEIBER

The genus Rossmaessleria Hesse, 1907, belonging to a mainly North African radiation of land snails assigned to the tribe Otalini (Helicidae: Helicinae, see Razkin et al. 2015 and Neiber & Hausdorf 2015) has recently been subject to two independent revisions (Walther et al. 2016; Torres Alba et al. 2016). Torres Alba et al. (2016) provided a detailed re-description of the type species of Rossmaessleria, R. scherzeri (Zelebor in Pfeiffer & Zelebor, 1867), including an anatomical investigation. Additionally, Torres Alba et al. (2016) provided new data on several Moroccan taxa belonging to the genus, e.g. R. tetuanensis (Kobelt, 1881) and R. olcesei (Pallary, 1899). Walther et al. (2016) revised the taxa included in Rossmaessleria on the basis of an examination of all available type material and newly collected specimens and described several, conchologically distinct new taxa. These authors also examined genital anatomy, conducted phylogenetic analyses on the basis of mitochondrial sequences and used species delimitation approaches based on their molecular data, concluding that several conchologically distinct lineages can be recognized in Rossmaessleria, but that anatomical and genetic differentiation does not support the recognition of distinct species in the genus. This result was further corroborated by the presence, although infrequent, of conchologically intermediate forms between some of the Rossmaessleria taxa. Accordingly, Walther et al. (2016) recognized only a single species, R. scherzeri, with 11 subspecies, which are geographically restricted to isolated limestone ranges or outcrops in the western parts of the Rif Mountains in northern Morocco (ten subspecies) and to the Rock of Gibraltar, from where the nominotypical subspecies was described (Zelebor in Pfeiffer & Zelebor 1867). 


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kyung Seok Kim ◽  
Kevin J. Roe

AbstractDetailed information on species delineation and population genetic structure is a prerequisite for designing effective restoration and conservation strategies for imperiled organisms. Phylogenomic and population genomic analyses based on genome-wide double digest restriction-site associated DNA sequencing (ddRAD-Seq) data has identified three allopatric lineages in the North American freshwater mussel genus Cyprogenia. Cyprogenia stegaria is restricted to the Eastern Highlands and displays little genetic structuring within this region. However, two allopatric lineages of C. aberti in the Ozark and Ouachita highlands exhibit substantial levels (mean uncorrected FST = 0.368) of genetic differentiation and each warrants recognition as a distinct evolutionary lineage. Lineages of Cyprogenia in the Ouachita and Ozark highlands are further subdivided reflecting structuring at the level of river systems. Species tree inference and species delimitation in a Bayesian framework using single nucleotide polymorphisms (SNP) data supported results from phylogenetic analyses, and supports three species of Cyprogenia over the currently recognized two species. A comparison of SNPs generated from both destructively and non-destructively collected samples revealed no significant difference in the SNP error rate, quality and amount of ddRAD sequence reads, indicating that nondestructive or trace samples can be effectively utilized to generate SNP data for organisms for which destructive sampling is not permitted.


2015 ◽  
Vol 89 (4) ◽  
pp. 665-694 ◽  
Author(s):  
Rachel H. Dunn ◽  
Kenneth D. Rose

AbstractSpecies-level diversity and evolution of Palaeosinopa from the Willwood Formation of the Bighorn Basin is reassessed based on substantial new material from the Bighorn, Powder River, and Wind River basins. We recognize three species of Palaeosinopa in the Willwood Formation of the Bighorn Basin: P. lutreola, P. incerta, and P. veterrima. The late Wasatchian species P. didelphoides is not present in the Bighorn Basin. The Willwood species can be differentiated based only on size. P. veterrima is the most common and wide-ranging species and is the most variable in size and morphology: the stratigraphically lowest individuals are smaller, with narrower, more crestiform lower molars; whereas the highest are larger, with wider, more bunodont teeth. Although it could be argued that these represent distinct species, we demonstrate that this morphological evolution occurred as the gradual and mosaic accumulation of features, suggesting in situ anagenetic evolution. The two smaller species are present only low in the section (biochrons Wa0–Wa4) and show no discernable evolution in size or morphology. A new skeleton of Palaeosinopa veterrima from the Willwood Formation is described, and other new postcrania are reported. The skeleton is the oldest associated skeleton of Palaeosinopa known, yet it is remarkably similar to those of younger, more derived pantolestids, the primary disparities being minor differences in proportions of the innominate, femur, and tibia, and co-ossification of the distal tibia and fibula. Either P. incerta or P. lutreola was likely the ancestral population that gave rise to the other Wasatchian Palaeosinopa. Alternatively, P. veterrima may have migrated into the Bighorn Basin from the Powder River Basin.


Author(s):  
Timothy L Collins ◽  
Jeremy J Bruhl ◽  
Alexander N Schmidt-Lebuhn ◽  
Ian R H Telford ◽  
Rose L Andrew

Abstract Golden everlasting paper daisies (Xerochrysum, Gnaphalieae, Asteraceae) were some of the earliest Australian native plants to be cultivated in Europe. Reputedly a favourite of Napoléon Bonaparte and Empress Joséphine, X. bracteatum is thought to have been introduced to the island of St Helena in the South Atlantic during Napoléon’s exile there. Colourful cultivars were developed in the 1850s, and there is a widely held view that these were produced by crossing Xerochrysum with African or Asian Helichrysum spp. Recent molecular phylogenetic analyses and subtribal classification of Gnaphalieae cast doubt on this idea. Using single-nucleotide polymorphism (SNP) data, we looked for evidence of gene flow between modern cultivars, naturalized paper daisies from St Helena and four Xerochrysum spp. recorded in Europe in the 1800s. There was strong support for gene flow between cultivars and X. macranthum. Paper daisies from St Helena were genotypically congruent with X. bracteatum and showed no indications of ancestry from other species or from the cultivars, consistent with the continuous occurrence of naturalized paper daisies introduced by Joséphine and Napoléon. We also present new evidence for the origin of colourful Xerochrysum cultivars and hybridization of congeners in Europe from Australian collections.


Nematology ◽  
2021 ◽  
pp. 1-10
Author(s):  
Samira Aliverdi ◽  
Ebrahim Pourjam ◽  
Majid Pedram

Summary Ditylenchus acantholimonis n. sp. is described based on morphological, morphometric and molecular characters. It was isolated from the rhizosphere soil of Acantholimon sp. in Golestan province, Iran, and is mainly characterised by having four lines in the lateral field, a pyriform to bottle-shaped offset pharyngeal bulb, post-vulval uterine sac 36.6-56.1% of the vulva to anus distance long, and a subcylindrical to conical tail with widely rounded tip. It is further characterised by short to medium-sized females, 480-617 μm long, with a fine stylet having small rounded knobs, V = 80.8-83.6, c = 11.0-13.8, c′ = 3.3-4.6, and males with 16.0-17.0 μm long spicules. The new species was morphologically compared with six species having four lines in their lateral field, rounded tail tip and comparable morphometric data namely: D. dipsacoideus, D. emus, D. exilis, D. paraparvus, D. sturhani, and D. solani. It was also compared with two species, D. ferepolitor and D. angustus, forming a maximally supported clade in the 18S tree. The phylogenetic analyses using the maximal number of Anguinidae and several Sphaerularioidea genera based upon partial 18S and 28S rDNA D2-D3 sequences revealed that Ditylenchus is polyphyletic. In the 18S tree, the new species formed a clade with D. ferepolitor (KJ636374) and D. angustus (AJ966483); in the 28S tree it formed a poorly supported clade with D. phyllobios (KT192618) and Ditylenchus sp. (MG865719).


2021 ◽  
Author(s):  
Mónica Núñez-Flores ◽  
Daniel Gomez-Uchida ◽  
Pablo J. López-González

Thouarella Gray, 1870, is one of the most speciose genera among gorgonians of the family Primnoidae (Cnidaria:Octocorallia:Anthozoa), being remarkably diverse in the Antarctic and sub-Antarctic seafloor. However, their diversity in the Southern Ocean is likely underestimated. Phylogenetic analyses of mitochondrial and nuclear DNA markers were integrated with species delimitation approaches as well as morphological colonial and polyps features and skeletal SEM examinations to describe and illustrate three new species within Thouarella, from the Weddell Sea, Southern Ocean: T. amundseni sp. nov., T. dolichoespinosa sp. nov. and T. pseudoislai sp. nov. Our species delimitation results suggest, for the first time, the potential presence of Antarctic and sub-Antarctic cryptic species of primnoids, based on the likely presence of sibling species within T. undulata and T. crenelata. With the three new species here described, the global diversity of Thouarella has increased to 41 species, 15 of which are endemic to the Antarctic and sub-Antarctic waters. Consequently, our results provide new steps for uncovering the shelf benthonic macrofauna’s hidden diversity in the Southern Ocean. Finally, we recommend using an integrative taxonomic framework in this group of organisms and species delimitation approaches because the distinctions between some Thouarella species based only on a superficial examination of their macro- and micromorphological features is, in many cases, limited.


2020 ◽  
Vol 287 (1920) ◽  
pp. 20192806 ◽  
Author(s):  
Laurent Marivaux ◽  
Jorge Vélez-Juarbe ◽  
Gilles Merzeraud ◽  
François Pujos ◽  
Lázaro W. Viñola López ◽  
...  

By their past and present diversity, rodents are among the richest components of Caribbean land mammals. Many of these became extinct recently. Causes of their extirpation, their phylogenetic affinities, the timing of their arrival in the West Indies and their biogeographic history are all ongoing debated issues. Here, we report the discovery of dental remains from Lower Oligocene deposits ( ca 29.5 Ma) of Puerto Rico. Their morphology attests to the presence of two distinct species of chinchilloid caviomorphs, closely related to dinomyids in a phylogenetic analysis, and thus of undisputable South American origin. These fossils represent the earliest Caribbean rodents known thus far. They could extend back to 30 Ma the lineages of some recently extinct Caribbean giant rodents ( Elasmodontomys and Amblyrhiza ), which are also retrieved here as chinchilloids. This new find has substantial biogeographic implications because it demonstrates an early dispersal of land mammals from South America to the West Indies, perhaps via the emergence of the Aves Ridge that occurred ca 35–33 Ma (GAARlandia hypothesis). Considering both this new palaeontological evidence and recent molecular divergence estimates, the natural colonization of the West Indies by rodents probably occurred through multiple and time-staggered dispersal events (chinchilloids, then echimyid octodontoids (spiny rats/hutias), caviids and lastly oryzomyin muroids (rice rats)).


Sign in / Sign up

Export Citation Format

Share Document