Principal component analysis and blind source separation of modulated sources for electro-mechanical systems diagnostic

2005 ◽  
Vol 19 (6) ◽  
pp. 1293-1311 ◽  
Author(s):  
C. Servière ◽  
P. Fabry
Author(s):  
Sattar B. Sadkhan Al Maliky ◽  
Nidaa A. Abbas

Blind Source Separation (BSS) represented by Independent Component Analysis (ICA) has been used in many fields such as communications and biomedical engineering. Its application to image and speech encryption, however, has been rare. In this chapter, the authors present ICA and Principal Component Analysis (PCA) as a category of BSS-based method for encrypting images and speech by using Blind Source Separation (BSS) since the security encryption technologies depend on many intractable mathematical problems. Using key signals, they build a suitable BSS underdetermined problem in the encryption and then circumvent this problem with key signals for decoding. The chapter shows that the method based on the BSS can achieve a high level of safety right through building, mixing matrix, and generating key signals.


Author(s):  
J Awrejcewicz ◽  
VA Krysko ◽  
SA Mitskievich ◽  
IE Kutepov ◽  
IV Papkova ◽  
...  

In this study, an analysis of mechanical vibrations influenced by external additive white Gaussian noise and colored noise is conducted using the principal component analysis. The principal component analysis is widely employed for encoding images in image processing, biology, economics, sociology, and political science. However, it is hereby applied to analyze nonlinear dynamics of continuous mechanical systems for the first time. A rich class of objects, including straight beams, beams on Winkler foundations and spherical shells, is investigated in the present paper. The basic differential equations are obtained based on the Bernoulli–Euler hypothesis, and solutions of the linear PDEs are analyzed by means of the principal component analysis. Results obtained with the principal component analysis are compared with those for the method of empirical modal decomposition and the wavelet-packet decomposition.


2013 ◽  
Vol 380-384 ◽  
pp. 3678-3681 ◽  
Author(s):  
Gao Ling ◽  
Shou Xin Ren

A multi-dimensional data processing method, independent component analysis-based principal component regression (ICA-PCR) was developed for simultaneous kinetic determination of Cu (II), Fe (III) and Ni (II). Independent component analysis is a newly developed signal processing technique aiming at solving related blind source separation (BSS) problem. One program, PICAPCR, was designed to perform relative calculations. Experimental results showed the ICA-PCR method to be successful for simultaneous multicomponent kinetic determination even where there was severe overlap of spectra.


Author(s):  
Miguel A. Ferrer ◽  
Aday Tejera Santana

This work presents a brief introduction to the blind source separation using independent component analysis (ICA) techniques. The main objective of the blind source separation (BSS) is to obtain, from observations composed by different mixed signals, those different signals that compose them. This objective can be reached using two different techniques, the spatial and the statistical one. The first one is based on a microphone array and depends on the position and separation of them. It also uses the directions of arrival (DOA) from the different audio signals. On the other hand, the statistical separation supposes that the signals are statistically independent, that they are mixed in a linear way and that it is possible to get the mixtures with the right sensors (Hyvärinen, Karhunen & Oja, 2001) (Parra, 2002). The last technique is the one that is going to be studied in this work. It is due to this technique is the newest and is in a continuous development. It is used in different fields such as natural language processing (Murata, Ikeda & Ziehe, 2001) (Saruwatari, Kawamura & Shikano, 2001), bioinformatics, image processing (Cichocki & Amari, 2002) and in different real life applications such as mobile communications (Saruwatari, Sawai, Lee, Kawamura, Sakata & Shikano, 2003). Specifically, the technique that is going to be used is the Independent Component Analysis (ICA). ICA comes from an old technique called PCA (Principal Component Analysis) (Hyvärinen, Karhunen & Oja, 2001) (Smith, 2006). PCA is used in a wide range of scopes such as face recognition or image compression, being a very common technique to find patterns in high dimension data. The BSS problem can be of two different ways; the first one is when the mixtures are linear. It means that the data are mixed without echoes or reverberations, while the second one, due to these conditions, the mixtures are convolutive and they are not totally independent because of the signal propagation through dynamic environments. It is the “Cocktail party problem”. Depending on the mixtures, there are several methods to solve the BSS problem. The first case can be seen as a simplification of the second one. The blind source separation based on ICA is also divided into three groups; the first one are those methods that works in the time domain, the second are those who works in the frequency domain and the last group are those methods that combine frequency and time domain methods. A revision of the technique state of these methods is proposed in this work.


2021 ◽  
pp. 1-36
Author(s):  
Takuya Isomura ◽  
Taro Toyoizumi

For many years, a combination of principal component analysis (PCA) and independent component analysis (ICA) has been used for blind source separation (BSS). However, it remains unclear why these linear methods work well with real-world data that involve nonlinear source mixtures. This work theoretically validates that a cascade of linear PCA and ICA can solve a nonlinear BSS problem accurately—when the sensory inputs are generated from hidden sources via nonlinear mappings with sufficient dimensionality. Our proposed theorem, termed the asymptotic linearization theorem, theoretically guarantees that applying linear PCA to the inputs can reliably extract a subspace spanned by the linear projections from every hidden source as the major components—and thus projecting the inputs onto their major eigenspace can effectively recover a linear transformation of the hidden sources. Then subsequent application of linear ICA can separate all the true independent hidden sources accurately. Zero-element-wise-error nonlinear BSS is asymptotically attained when the source dimensionality is large and the input dimensionality is sufficiently larger than the source dimensionality. Our proposed “Data Availability” section just before the Acknowledgments is validated analytically and numerically. Moreover, the same computation can be performed by using Hebbian-like plasticity rules, implying the biological plausibility of this nonlinear BSS strategy. Our results highlight the utility of linear PCA and ICA for accurately and reliably recovering nonlinearly mixed sources and suggest the importance of employing sensors with sufficient dimensionality to identify true hidden sources of real-world data.


Sign in / Sign up

Export Citation Format

Share Document