scholarly journals Blind separation of internal combustion engine vibration signals by a deflation method

2008 ◽  
Vol 22 (5) ◽  
pp. 1082-1091 ◽  
Author(s):  
Xianhua Liu ◽  
Robert B. Randall ◽  
Jérôme Antoni
2013 ◽  
Vol 328 ◽  
pp. 367-375 ◽  
Author(s):  
Guo Yan Feng ◽  
Yan Ping Cai ◽  
Yan Ping He

For the limitations of HHT of the internal combustion engine vibration signal analysis, and the problem of WVD cross-term suppression methods existing aggregation and cross-term component suppression conflicting, the time-frequency analysis method based on EMD white noise energy density distribution characteristics of the internal combustion engine vibration is proposed. First, the internal combustion engine vibration signal was decomposed into the independent series intrinsic mode function (IMF) with different characteristic time scales by using EMD decomposition method. Then, based on the energy density distribution characteristics of the white noise in EMD decomposition, used the distribution interval estimation curve of the IMFs energy density logarithm of white noise with the same length of the original signal as cordon for false pattern component, identified and eliminated false mode component of vibration signal IMFs component, analysised of each IMF with Wigner-Ville. Finally, the Wigner-Ville analysis results of each IMF were linear superposed in order to reconstruct the original signal time-frequency distribution. Simulation and engine vibration time-frequency analysis results show that this method has an excellent time-frequency characteristics, and can successfully extract feature information of the internal combustion engine cylinder head vibration signal.


2001 ◽  
Vol 123 (3) ◽  
pp. 685-692 ◽  
Author(s):  
D. M. W. Hoffman ◽  
D. R. Dowling

In internal combustion engine vibration modeling, it is typically assumed that the vibratory state of the engine does not influence the loads transmitted to the engine block from its moving internal components. This one-way-coupling assumption leads to energy conservation problems and does not account for Coriolis and gyroscopic interactions between the engine block and its rotating and reciprocating internal components. A new seven-degree-of-freedom engine vibration model has been developed that does not utilize this assumption and properly conserves energy. This paper presents time and frequency-domain comparisons of this model to experimental measurements made on an inline six-cylinder heavy-duty Diesel engine running at full load at peak-torque (1200 rpm) and rated (2100 rpm) speeds. The model successfully predicts the overall features of the engine’s vibratory output with model-experiment correlation coefficients as high as 70 percent for vibration frequencies up through third engine order. The results are robust to variations in the model parameters. Predictions are less successful at the detail level and at higher frequencies because of uncertainties in the actual imperfections of the test engine, and because of the influence of unmodeled engine components.


2017 ◽  
Vol 171 (4) ◽  
pp. 279-282
Author(s):  
Grzegorz SZYMAŃSKI ◽  
Wojciech MISZTAL

The diagnostic testing of internal combustion engine can be made by using working processes and methods which take advantage of leftover processes. Working processes give information about general condition of internal combustion engine. Leftover processes give information about condition of particular subassemblies and kinematic couples; hence they are used as autonomous processes or as processes supporting other diagnostic methods. Methods based on analysis of vibrations and noise changes to determine technical condition of object are named as vibroacoustic diagnostics. In papers about vibroacoustic diagnostics of engine, problems connected with difficulty to select test point and to define diagnostic parameters containing essential information about engine’s condition, are most often omitted. Selection of engine’s working parameters and conditions of taking measurements or recording vibration signal are usually based on references, researcher’s experience or intuition. General assumptions about taking measurements of signal closest to its source are most often used. This paper presents a new approach to vibroacoustic diagnostics of jet engine. Selection of measurement points of vibration signals on the basis of tests stand results was suggested and perform a sensitivity analysis of measurement points on the engine support.


Sign in / Sign up

Export Citation Format

Share Document