Development of a two-DOF inertial rotary motor using a piezoelectric actuator constructed on four bimorphs

2021 ◽  
Vol 149 ◽  
pp. 107213 ◽  
Author(s):  
Shijing Zhang ◽  
Yingxiang Liu ◽  
Jie Deng ◽  
Xinqi Tian ◽  
Xiang Gao
2009 ◽  
Vol 80 (1) ◽  
pp. 014701 ◽  
Author(s):  
W. X. Han ◽  
Q. Zhang ◽  
Y. T. Ma ◽  
C. L. Pan ◽  
Z. H. Feng

Author(s):  
S. Trachtenberg ◽  
D. J. DeRosier

The bacterial cell is propelled through the liquid environment by means of one or more rotating flagella. The bacterial flagellum is composed of a basal body (rotary motor), hook (universal coupler), and filament (propellor). The filament is a rigid helical assembly of only one protein species — flagellin. The filament can adopt different morphologies and change, reversibly, its helical parameters (pitch and hand) as a function of mechanical stress and chemical changes (pH, ionic strength) in the environment.


1998 ◽  
Vol 08 (PR2) ◽  
pp. Pr2-785-Pr2-788
Author(s):  
M. E.H. Benbouzid ◽  
G. Reyne ◽  
G. Meunier
Keyword(s):  

2020 ◽  
pp. 3-11
Author(s):  
S.M. Afonin

Structural-parametric models, structural schemes are constructed and the transfer functions of electro-elastic actuators for nanomechanics are determined. The transfer functions of the piezoelectric actuator with the generalized piezoelectric effect are obtained. The changes in the elastic compliance and rigidity of the piezoactuator are determined taking into account the type of control. Keywords electro-elastic actuator, piezo actuator, structural-parametric model, transfer function, parametric structural scheme


Micromachines ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 863 ◽  
Author(s):  
Weiqing Huang ◽  
Mengxin Sun

A piezoelectric actuator using a lever mechanism is designed, fabricated, and tested with the aim of accomplishing long-travel precision linear driving based on the stick-slip principle. The proposed actuator mainly consists of a stator, an adjustment mechanism, a preload mechanism, a base, and a linear guide. The stator design, comprising a piezoelectric stack and a lever mechanism with a long hinge used to increase the displacement of the driving foot, is described. A simplified model of the stator is created. Its design parameters are determined by an analytical model and confirmed using the finite element method. In a series of experiments, a laser displacement sensor is employed to measure the displacement responses of the actuator under the application of different driving signals. The experiment results demonstrate that the velocity of the actuator rises from 0.05 mm/s to 1.8 mm/s with the frequency increasing from 30 Hz to 150 Hz and the voltage increasing from 30 V to 150 V. It is shown that the minimum step distance of the actuator is 0.875 μm. The proposed actuator features large stroke, a simple structure, fast response, and high resolution.


Sign in / Sign up

Export Citation Format

Share Document