linear extended state observer
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 37)

H-INDEX

6
(FIVE YEARS 2)

Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 324
Author(s):  
Wei Jiang ◽  
Gang Zhu ◽  
Ying Zheng

In order to solve the problems of repetitive and non-repetitive interference in the workflow of Automated Guided Vehicle (AGV), Iterative Learning Control (ILC) combined with linear extended state observer (LESO) is utilized to improve the control accuracy of AGV drive motor. Considering the working conditions of AGV, the load characteristics of the drive motor are analyzed with which the mathematical model of motor system is established. Then the third-order extended state space equations of the system approximate model is obtained, in which LESO is designed to estimate the system states and the total disturbance. For the repeatability of AGV workflow, ILC is designed to improve the control accuracy. As the goods mass transported each time is not same, the LESO is utilized to estimate the non-repetitive load disturbance in real time and compensate the disturbance of the system to improve the position precision. The convergence of the combined algorithm is also verified. Simulation and experimental results show that the proposed iterative learning control strategy based on LESO can reduce the positioning error in AGV workflow and improve the system performance.


Actuators ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 212
Author(s):  
Shi-Heng Hsu ◽  
Chuan Changcheng ◽  
Heng-Ju Lee ◽  
Chun-Ta Chen

In this paper, a four degrees-of-freedom robotic hip exoskeleton was proposed for gait rehabilitation. The robotic hip exoskeleton was designed with active flexion/extension and passive abduction/adduction at each hip joint to comply with the movement of the thigh. Due to each user’s different lower limbs characteristics and unknown torques at hip joints, model-free linear extended state observer (LESO)-based controllers were proposed for rehabilitation gait control. The prototypes of the robotic hip exoskeleton and controller designs were validated and compared through walking and ascending rehabilitation experiments. Additionally, a motion captured system and EMG signals were used to investigate the walking assistance of the robotic hip exoskeleton.


Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 761
Author(s):  
Xin Ji ◽  
Aichen Wang ◽  
Xinhua Wei

Current methods to control the spraying quantity present several disadvantages, such as poor precision, a long adjustment time, and serious environmental pollution. In this paper, the flow control valve and the linear active disturbance controller (LADRC) were used to control the spraying quantity. Due to the disturbance characteristics in the spraying pipeline during the actual operation, the total disturbance was observed by a linear extended state observer (LESO). A 12 m commercial boom sprayer was used to carry out practical field operation tests after relevant intelligent transformation. The experimental results showed that the LADRC controller adopted in this paper can significantly suppress the disturbance in practical operation under three different operating speeds. Compared with the traditional proportional–integral–differential controller (PID) and an improved PID controller, the response speed of the proposed controller improved by approximately 3~5 s, and the steady-state error accuracy improved by approximately 2~9%.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 888
Author(s):  
Zhen Zhang ◽  
Jian Cheng ◽  
Yinan Guo

Taking dead-zone nonlinearlity and external disturbances into account, an active disturbance rejection optimal controller based on a proportional-derivative (PD) control law is proposed by connecting the proportional-integral-derivative (PID) control, the active disturbance rejection control (ADRC) and particle swarm optimization (PSO), with the purpose of providing an efficient and practical technology, and improving the dynamic and steady-state control performances. Firstly, in order to eliminate the negative effects of the dead-zone, a class of 2-order typical single-input single-out system model is established after compensating the dead-zone. Following that, PD control law is introduced to replace the state error feedback control law in ADRC to simplify the control design. By analyzing the characteristics of the traditional linear extended state observer, an improved linear extended state observer is designed, with the purpose of improving the estimation performance of disturbances. Moreover, employing PSO with a designed objective function to optimize parameters of controller to improve control performance. Finally, ten comparative experiments are carried out to verify the effectiveness and superiority of the proposed controller.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bingjie Xu ◽  
Shuai Ji ◽  
Chengrui Zhang ◽  
Chao Chen ◽  
Hepeng Ni ◽  
...  

Purpose Trajectory tracking error of robotic manipulator has limited its applications in trajectory tracking control systems. This paper aims to improve the trajectory tracking accuracy of robotic manipulator, so a linear-extended-state-observer (LESO)-based prescribed performance controller is proposed. Design/methodology/approach A prescribed performance function with the convergence rate, maximum overshoot and steady-state error is derived for the output error transformation, whose stability can guarantee trajectory tracking accuracy of the original robotic system. A LESO is designed to estimate and eliminate the total disturbance, which neither requires a detailed system model nor a heavy computation load. The stability of the system is proved via the Lyapunov theory. Findings Comparative experimental results show that the proposed controller can achieve better trajectory tracking accuracy than proportional-integral-differential control and linear active disturbance rejection control. Originality/value In the LESO-based prescribed performance control (PPC), the LESO was incorporated into the PPC design, it solved the problem of stabilizing the complex transformed system and avoided the costly offline identification of dynamic model and estimated and eliminated the total disturbance in real-time with light computational burden. LESO-based PPC further improved control accuracy on the basis of linear-active-disturbance-rejection-control. The new proposed method can reduce the trajectory tracking error of the robotic manipulators effectively on the basis of simplicity and stability.


Sign in / Sign up

Export Citation Format

Share Document