Convolutional plug-and-play sparse optimization for impulsive blind deconvolution

2021 ◽  
Vol 161 ◽  
pp. 107877
Author(s):  
Zhaohui Du ◽  
Han Zhang ◽  
Xuefeng Chen ◽  
Yixin Yang
2020 ◽  
Vol 10 (7) ◽  
pp. 2437 ◽  
Author(s):  
Haoyuan Yang ◽  
Xiuqin Su ◽  
Songmao Chen

Image blurs are a major source of degradation in an imaging system. There are various blur types, such as motion blur and defocus blur, which reduce image quality significantly. Therefore, it is essential to develop methods for recovering approximated latent images from blurry ones to increase the performance of the imaging system. In this paper, an image blur removal technique based on sparse optimization is proposed. Most existing methods use different image priors to estimate the blur kernel but are unable to fully exploit local image information. The proposed method adopts an image prior based on nonzero measurement in the image gradient domain and introduces an analytical solution, which converges quickly without additional searching iterations during the optimization. First, a blur kernel is accurately estimated from a single input image with an alternating scheme and a half-quadratic optimization algorithm. Subsequently, the latent sharp image is revealed by a non-blind deconvolution algorithm with the hyper-Laplacian distribution-based priors. Additionally, we analyze and discuss its solutions for different prior parameters. According to the tests we conducted, our method outperforms similar methods and could be suitable for dealing with image blurs in real-life applications.


2020 ◽  
Vol 2020 (10) ◽  
pp. 181-1-181-7
Author(s):  
Takahiro Kudo ◽  
Takanori Fujisawa ◽  
Takuro Yamaguchi ◽  
Masaaki Ikehara

Image deconvolution has been an important issue recently. It has two kinds of approaches: non-blind and blind. Non-blind deconvolution is a classic problem of image deblurring, which assumes that the PSF is known and does not change universally in space. Recently, Convolutional Neural Network (CNN) has been used for non-blind deconvolution. Though CNNs can deal with complex changes for unknown images, some CNN-based conventional methods can only handle small PSFs and does not consider the use of large PSFs in the real world. In this paper we propose a non-blind deconvolution framework based on a CNN that can remove large scale ringing in a deblurred image. Our method has three key points. The first is that our network architecture is able to preserve both large and small features in the image. The second is that the training dataset is created to preserve the details. The third is that we extend the images to minimize the effects of large ringing on the image borders. In our experiments, we used three kinds of large PSFs and were able to observe high-precision results from our method both quantitatively and qualitatively.


2000 ◽  
Author(s):  
Lisa A. Pflug ◽  
George B. Smith ◽  
Michael K. Broadhead

Sign in / Sign up

Export Citation Format

Share Document