scholarly journals Multi-source transfer learning network to complement knowledge for intelligent diagnosis of machines with unseen faults

2022 ◽  
Vol 162 ◽  
pp. 108095
Author(s):  
Bin Yang ◽  
Songci Xu ◽  
Yaguo Lei ◽  
Chi-Guhn Lee ◽  
Edward Stewart ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ruichao Zhu ◽  
Tianshuo Qiu ◽  
Jiafu Wang ◽  
Sai Sui ◽  
Chenglong Hao ◽  
...  

AbstractMetasurfaces have provided unprecedented freedom for manipulating electromagnetic waves. In metasurface design, massive meta-atoms have to be optimized to produce the desired phase profiles, which is time-consuming and sometimes prohibitive. In this paper, we propose a fast accurate inverse method of designing functional metasurfaces based on transfer learning, which can generate metasurface patterns monolithically from input phase profiles for specific functions. A transfer learning network based on GoogLeNet-Inception-V3 can predict the phases of 28×8 meta-atoms with an accuracy of around 90%. This method is validated via functional metasurface design using the trained network. Metasurface patterns are generated monolithically for achieving two typical functionals, 2D focusing and abnormal reflection. Both simulation and experiment verify the high design accuracy. This method provides an inverse design paradigm for fast functional metasurface design, and can be readily used to establish a meta-atom library with full phase span.


Author(s):  
Jialin Li ◽  
Xueyi Li ◽  
David He ◽  
Yongzhi Qu

In recent years, research on gear pitting fault diagnosis has been conducted. Most of the research has focused on feature extraction and feature selection process, and diagnostic models are only suitable for one working condition. To diagnose early gear pitting faults under multiple working conditions, this article proposes to develop a domain adaptation diagnostic model–based improved deep neural network and transfer learning with raw vibration signals. A particle swarm optimization algorithm and L2 regularization are used to optimize the improved deep neural network to improve the stability and accuracy of the diagnosis. When using the domain adaptation diagnostic model for fault diagnosis, it is necessary to discriminate whether the target domain (test data) is the same as the source domain (training data). If the target domain and the source domain are consistent, the trained improved deep neural network can be used directly for diagnosis. Otherwise, the transfer learning is combined with improved deep neural network to develop a deep transfer learning network to improve the domain adaptability of the diagnostic model. Vibration signals for seven gear types with early pitting faults under 25 working conditions collected from a gear test rig are used to validate the proposed method. It is confirmed by the validation results that the developed domain adaptation diagnostic model has a significant improvement in the adaptability of multiple working conditions.


2020 ◽  
Vol 85 ◽  
pp. 101785
Author(s):  
Xiangyun Liao ◽  
Yinling Qian ◽  
Yilong Chen ◽  
Xueying Xiong ◽  
Qiong Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document