meta atom
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 58)

H-INDEX

16
(FIVE YEARS 6)

2021 ◽  
pp. 2102084
Author(s):  
Rensheng Xie ◽  
Zhen Gu ◽  
Dajun Zhang ◽  
Xiong Wang ◽  
Hualiang Zhang ◽  
...  

2021 ◽  
pp. 2100301
Author(s):  
Rensheng Xie ◽  
Xin Fang ◽  
Dajun Zhang ◽  
Xiong Wang ◽  
Ke Chen ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Wenxuan Wu ◽  
Rong Lin ◽  
Na Ma ◽  
Ping Jiang ◽  
Xiaoyong Hu
Keyword(s):  

2021 ◽  
Author(s):  
Tarek Fawzi ◽  
Ammar A.M. Al-Talib

The development of science and applications have reached a stage where the naturally existed materials are not meeting the required properties. Metamaterials (MMs) are artificial materials that obtain their properties from their accurately engineered meta-atoms rather than the characteristics of their constituents. The size of the meta-atom is small compared to light’s wavelength. A metamaterial (MM) is a term means beyond material which has been engineered in order to possess properties that does not exist in naturally-found materials. Currently, they are made of multiple elements such as plastics and metals. They are being organized in iterating patterns at a scale that is smaller than wavelengths of the phenomena it influences. The properties of the MMs are not derived from the forming materials but their delicate size, geometry, shape, orientation, and arrangement. These properties maintain MMs to manipulate the electromagnetic waves via promoting, hindering, absorbing waves to attain an interest that goes beyond the natural materials’ potency. The apt design of MMs maintains them of influencing the electromagnetic radiation or sound in a distinctive technique never found in natural materials. The potential applications of MMs are wide, starting from medical, aerospace, sensors, solar-power management, crowd control, antennas, army equipment and reaching earthquakes shielding and seismic materials.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2904
Author(s):  
Song Yue ◽  
Zhe Zhang ◽  
Kunpeng Zhang ◽  
Huifang Guo ◽  
Ran Wang ◽  
...  

Reflective imaging systems such as Cassegrain-type telescopes are widely utilized in astronomical observations. However, curved mirrors in traditional Cassegrain telescopes unavoidably make the imaging system bulky and costly. Recent developments in the field of metasurfaces provide an alternative way to construct optical systems, possessing the potential to make the whole system flat, compact and lightweight. In this work, we propose a design for a miniaturized Cassegrain telescope by replacing the curved primary and secondary mirrors with flat and ultrathin metasurfaces. The meta-atoms, consisting of SiO2 stripes on an Al film, provide high reflectance (>95%) and a complete phase coverage of 0~2π at the operational wavelength of 4 μm. The optical functionality of the metasurface Cassegrain telescope built with these meta-atoms was confirmed and studied with numerical simulations. Moreover, fabrication errors were mimicked by introducing random width errors to each meta-atom; their influence on the optical performance of the metasurface device was studied numerically. The concept of the metasurface Cassegrain telescope operating in the infrared wavelength range can be extended to terahertz (THz), microwave and even radio frequencies for real-world applications, where metasurfaces with a large aperture size are more easily obtained.


Author(s):  
Yang Cheng ◽  
Yongfeng Li ◽  
He Wang ◽  
Jiafu Wang ◽  
Zhe Qin ◽  
...  

Abstract Chirality, a geometric property that is of great importance in chemistry, biology, and medicine, has spurred many breakthroughs in the field of multi-dimensional metasurfaces that provide efficient ways of flexibly manipulating amplitude and phase of circular polarization (CP) waves. As one of the most important applications, chiral metamaterials can be used to implement novel absorbers. Herein, an ultra-thin wideband circular dichroic asymmetric metasurface was implemented via loading resistive film into chiral resonators. Opposite and reversible polarization conversion and circular dichroism (CD) were realized as being illuminated by CP waves from both sides meanwhile. Theoretical derivation and simulation verify that the polarization conversion and CD enhancement utilizing multi-layer CD metasurface. It is also found that the orientation angle of the meta-atom of each layer plays an important role in the CD enhancement, which paves a new way for CD enhancement. In addition, the coupling between the CD resonators was utilized to manipulate CD. On this basis, an ultra-thin polarization-insensitive absorber was achieved by employing a C4 2×2 CD resonator array, which was identical illuminating from front and back sides. Circular dichroic absorbers possess great potential in practical applications, ranging from stealth technology, antenna isolation, multi-functional microwave devices, chiral sensing, and catalysis.


2021 ◽  
Author(s):  
Zhibiao Zhu ◽  
Yang Cheng ◽  
Yongfeng li ◽  
Jiafu Wang ◽  
Shaobo Qu

eLight ◽  
2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Zhongwei Jin ◽  
David Janoschka ◽  
Junhong Deng ◽  
Lin Ge ◽  
Pascal Dreher ◽  
...  

AbstractNanophotonic platforms such as metasurfaces, achieving arbitrary phase profiles within ultrathin thickness, emerge as miniaturized, ultracompact and kaleidoscopic optical vortex generators. However, it is often required to segment or interleave independent sub-array metasurfaces to multiplex optical vortices in a single nano-device, which in turn affects the device’s compactness and channel capacity. Here, inspired by phyllotaxis patterns in pine cones and sunflowers, we theoretically prove and experimentally report that multiple optical vortices can be produced in a single compact phyllotaxis nanosieve, both in free space and on a chip, where one meta-atom may contribute to many vortices simultaneously. The time-resolved dynamics of on-chip interference wavefronts between multiple plasmonic vortices was revealed by ultrafast time-resolved photoemission electron microscopy. Our nature-inspired optical vortex generator would facilitate various vortex-related optical applications, including structured wavefront shaping, free-space and plasmonic vortices, and high-capacity information metaphotonics.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4097
Author(s):  
Hee-Dong Jeong ◽  
Seong-Won Moon ◽  
Seung-Yeol Lee

Diffraction is a fundamental phenomenon that reveals the wave nature of light. When a plane wave is transmitted or reflected from a grating or other periodic structures, diffracted light waves propagate at several angles that are specified by the period of the given structure. When the optical period is shorter than the wavelength, constructive interference of diffracted light rays from the subwavelength-scale grating forms a uniform plane wave. Many studies have shown that through the appropriate design of meta-atom geometry, metasurfaces can be used to control light properties. However, most semitransparent metasurfaces are designed to perform symmetric operation with regard to diffraction, meaning that light diffraction occurs identically for front- and back-side illumination. We propose a simple single-layer plasmonic metasurface that achieves asymmetric diffraction by optimizing the transmission phase from two types of nanoslits with I- and T-shaped structures. As the proposed structure is designed to have a different effective period for each observation side, it is either diffractive or nondiffractive depending on the direction of observation. The designed structure exhibits a diffraction angle of 54°, which can be further tuned by applying different period conditions. We expect the proposed asymmetric diffraction meta-grating to have great potential for the miniaturized optical diffraction control systems in the infrared band and compact optical diffraction filters for integrated optics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Amin ◽  
Omar Siddiqui ◽  
Thamer S. Almoneef

AbstractConventional metasurface absorbers rely on high dissipation losses by incorporating lossy materials. In this paper, we propose a novel mechanism of absorption based on phase cancellation of polarization states of scattered fields emerging from adjacent L-shaped chiral meta-atoms (unit cells). A linearly polarized wave forms helicoidal currents in each meta-atom leading to diagonally polarized radiated waves. When phase cancellation is employed by reorienting four such meta-atoms in a supercell configuration, contra-directed chiral currents flow in adjacent cells to cancel all the radiated fields in far-field region leading to a minimal broadside radar cross-section. From the reciprocity, the currents that are induced in the meta-atoms produce a null towards the incident direction which can be utilized for infrared energy harvesting. Full wave electromagnetic simulation indicates near perfect resonant absorption around 52.2 THz frequency. Enhanced bandwidth is shown by adding smaller resonators inside the supercell in nested form leading to dual band absorption at 45.2 THz and 53.15 THz.


Sign in / Sign up

Export Citation Format

Share Document