Two-phase flow-induced vibration fatigue damage of tube bundles with clearance restriction

2022 ◽  
Vol 166 ◽  
pp. 108442
Author(s):  
Jiang Lai ◽  
Shihao Yang ◽  
Lingling Lu ◽  
Tiancai Tan ◽  
Lei Sun
2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Paul Feenstra ◽  
David S. Weaver ◽  
Tomomichi Nakamura

Laboratory experiments were conducted to determine the flow-induced vibration response and fluidelastic instability threshold of model heat exchanger tube bundles subjected to a cross-flow of refrigerant 11. Tube bundles were specially built with tubes cantilever-mounted on rectangular brass support bars so that the stiffness in the streamwise direction was about double that in the transverse direction. This was designed to simulate the tube dynamics in the U-bend region of a recirculating-type nuclear steam generator. Three model tube bundles were studied, one with a pitch ratio of 1.49 and two with a smaller pitch ratio of 1.33. The primary intent of the research was to improve our understanding of the flow-induced vibrations of heat exchanger tube arrays subjected to two-phase cross-flow. Of particular concern was to compare the effect of the asymmetric stiffness on the fluidelastic stability threshold with that of axisymmetric stiffness arrays tested most prominently in literature. The experimental results are analyzed and compared with existing data from literature using various definitions of two-phase fluid parameters. The fluidelastic stability thresholds of the present study agree well with results from previous studies for single-phase flow. In two-phase flow, the comparison of the stability data depends on the definition of two-phase flow velocity.


Author(s):  
Paul Feenstra ◽  
David S. Weaver ◽  
Tomomichi Nakamura

Laboratory experiments were conducted to determine the flow-induced vibration response and fluidelastic instability threshold of a model heat exchanger tube bundle subjected to a cross-flow of refrigerant 11. Tube bundles were specially built with cantilevered tubes mounted on asymmetric supports so that the stiffness in the streamwise direction was about double that of the transverse direction. This was designed to simulate the tube dynamics in the U-bend region of a recirculating-type nuclear steam generator. Three model tube bundles were tested, one with a pitch ratio of 1.49 and two with a smaller pitch ratio of 1.33. The primary intent of the research was to improve our understanding of the flow-induced vibrations of heat exchanger tube arrays subjected to two-phase cross-flow. Of particular concern was to compare the effect of the asymmetric support stiffness on the fluidelastic stability threshold with that of symmetric stiffness arrays tested most prominently in the literature. The experimental results are analysed and compared with existing data from the literature using various definitions of two-phase fluid parameters. The fluidelastic stability thresholds of the present study agree well with results from previous studies for single phase flow. In two-phase flow, the comparison of the stability data depends upon the definition of two-phase flow velocity.


Author(s):  
Deepanjan Mitra ◽  
Vijay K. Dhir ◽  
Ivan Catton

In the past, fluid-elastic instability in two-phase flow has been largely investigated with air-water flow. In this work, new experiments are conducted in air-water cross-flow with a fully flexible 5 × 3 normal square array having pitch-to-diameter ratio of 1.4. The tubes have a diameter of 0.016 m and a length of 0.21 m. The vibrations are measured using strain gages installed on piano wires used to suspend the tubes. Experiments are carried out for void fractions from 0%–30%. A comparison of the results of the current tests with previous experiments conducted in air-water cross-flow shows that instability occurs earlier in a fully flexible array as compared to a flexible tube surrounded by rigid tubes in an array. An attempt is made to separate out the effects of structural parameters of three different experimental datasets by replotting the instability criterion by incorporating the instability constant K, in the reduced velocity parameter.


2021 ◽  
Vol 321 ◽  
pp. 01002
Author(s):  
Claire Dubot ◽  
Vincent Melot ◽  
Claudine Béghein ◽  
Cyrille Allery ◽  
Clément Bonneau

Being able to predict the void fraction is essential for a numerical prediction of the thermohydraulic behaviour in steam generators. Indeed, it determines two-phase mixture density and affects two-phase mixture velocity which enable to evaluate the pressure drop of heat exchanger, the mass transfer and heat transfer coefficients. In this study, the flow is modelled by coupling Ansys Fluent with an in-house code library where a CFD porous media approach is implemented. In this code, the two-phase flow has been modelled so far using the Eulerian model. However, this two-phase model requires interaction laws between phases which are not known and/or reliable for a flow within a tube bundle. The aim of this paper is to use the mixture model, for which it is easier to implement suitable correlations for tube bundles. By expressing the relative velocity, as a function of slip, the void fraction model of Feenstra et al. developed for upward cross-flow through horizontal tube bundles is introduced. With this method, physical phenomena that occur in tube bundles are taken into consideration in the mixture model. The developed approach is validated based on the experimental results obtained by Dowlati et al.


2005 ◽  
Vol 4 (2) ◽  
Author(s):  
G. Ribatskia ◽  
J. R. Thome

This paper presents a state-of-the-art review of the hydrodynamic aspects of two-phase flow across horizontal tube bundles. The review covers studies related to the evaluation of void fraction, two-phase flow behaviors and pressure drops on the shell side of staggered and in-line tube bundles for upward, downward and side-to-side flows. This study of the literature critically describes the proposed flow pattern maps and semi-empirical correlations for predicting void fraction and frictional pressure drop. These predicting methods are generally based on experimental results for adiabatic air-water flows. A limited number of experimental studies with R-11 and R-113 were also carried out in the past. The review shows noticeable discrepancies among the available prediction methods. Finally, this study suggests that further research focusing on the development of representative databanks and new prediction methods is still necessary.


2016 ◽  
Vol 138 (9) ◽  
Author(s):  
Shuichiro Miwa ◽  
Takashi Hibiki ◽  
Michitsugu Mori

Fluctuating force induced by horizontal gas–liquid two-phase flow on 90 deg pipe bend at atmospheric pressure condition is considered. Analysis was conducted to develop a model which is capable of predicting the peak force fluctuation frequency and magnitudes, particularly at the stratified wavy two-phase flow regime. The proposed model was developed from the local instantaneous two-fluid model, and adopting guided acoustic theory and dynamic properties of one-dimensional (1D) waves to consider the collisional force due to the interaction between dynamic waves and structure. Comparing the developed model with experimental database, it was found that the main contribution of the force fluctuation due to stratified wavy flow is from the momentum and pressure fluctuations, and collisional effects. The collisional effect is due to the fluid–solid interaction of dynamic wave, which is named as the wave collision force. Newly developed model is capable of predicting the force fluctuations and dominant frequency range with satisfactory accuracy for the flow induced vibration (FIV) caused by stratified wavy two-phase flow in 52.5 mm inner diameter (ID) pipe bend.


Author(s):  
In-Cheol Chu ◽  
Heung June Chung ◽  
Chang Hee Lee ◽  
Hyung Hyun Byun ◽  
Moo Yong Kim

In the present study, a series of experiments have been performed to investigate a fluid-elastic instability of a nuclear steam generator U-tube bundle in an air-water two-phase flow condition. A total of 39 U-tubes are arranged in a rotated square array with a pitch-to-diameter ratio of 1.633. The diameter and other geometrical parameters of U-bend region are the same to those of an actual steam generator, but the vertical length of U-tubes are reduced to 2-span in contrast to 9-span of an actual steam generator. The following parameters were experimentally measured to evaluate a fluid-elastic instability of U-tube bundles in a two-phase flow: a general tube vibration response, a critical gap velocity, a damping ratio and a hydrodynamic mass. Based on the experimental measurements, the instability factor, K, of Connors’ relation was preliminary assessed with some assumptions on the velocity and density profiles of the two-phase flow.


Sign in / Sign up

Export Citation Format

Share Document