scholarly journals Site-Specific Integration of Functional Transgenes into the Human Genome by Adeno/AAV Hybrid Vectors

2004 ◽  
Vol 10 (4) ◽  
pp. 660-670 ◽  
Author(s):  
Alessandra Recchia ◽  
Laura Perani ◽  
Daniela Sartori ◽  
Clelia Olgiati ◽  
Fulvio Mavilio
2017 ◽  
Vol 83 (12) ◽  
Author(s):  
Coral González-Prieto ◽  
Richard Gabriel ◽  
Christoph Dehio ◽  
Manfred Schmidt ◽  
Matxalen Llosa

ABSTRACT Bacterial conjugation is a mechanism of horizontal DNA transfer. The relaxase TrwC of the conjugative plasmid R388 cleaves one strand of the transferred DNA at the oriT gene, covalently attaches to it, and leads the single-stranded DNA (ssDNA) into the recipient cell. In addition, TrwC catalyzes site-specific integration of the transferred DNA into its target sequence present in the genome of the recipient bacterium. Here, we report the analysis of the efficiency and specificity of the integrase activity of TrwC in human cells, using the type IV secretion system of the human pathogen Bartonella henselae to introduce relaxase-DNA complexes. Compared to Mob relaxase from plasmid pBGR1, we found that TrwC mediated a 10-fold increase in the rate of plasmid DNA transfer to human cells and a 100-fold increase in the rate of chromosomal integration of the transferred DNA. We used linear amplification-mediated PCR and plasmid rescue to characterize the integration pattern in the human genome. DNA sequence analysis revealed mostly reconstituted oriT sequences, indicating that TrwC is active and recircularizes transferred DNA in human cells. One TrwC-mediated site-specific integration event was detected, proving that TrwC is capable of mediating site-specific integration in the human genome, albeit with very low efficiency compared to the rate of random integration. Our results suggest that TrwC may stabilize the plasmid DNA molecules in the nucleus of the human cell, probably by recircularization of the transferred DNA strand. This stabilization would increase the opportunities for integration of the DNA by the host machinery. IMPORTANCE Different biotechnological applications, including gene therapy strategies, require permanent modification of target cells. Long-term expression is achieved either by extrachromosomal persistence or by integration of the introduced DNA. Here, we studied the utility of conjugative relaxase TrwC, a bacterial protein with site-specific integrase activity in bacteria, as an integrase in human cells. Although it is not efficient as a site-specific integrase, we found that TrwC is active in human cells and promotes random integration of the transferred DNA in the human genome, probably acting as a DNA chaperone until it is integrated by host mechanisms. TrwC-DNA complexes can be delivered to human cells through a type IV secretion system involved in pathogenesis. Thus, TrwC could be used in vivo to transfer the DNA of interest into the appropriate cell and promote its integration. If used in combination with a site-specific nuclease, it could lead to site-specific integration of the incoming DNA by homologous recombination.


1998 ◽  
Vol 72 (6) ◽  
pp. 5025-5034 ◽  
Author(s):  
Fabio Palombo ◽  
Andrea Monciotti ◽  
Alessandra Recchia ◽  
Riccardo Cortese ◽  
Gennaro Ciliberto ◽  
...  

ABSTRACT Baculovirus can transiently transduce primary human and rat hepatocytes, as well as a subset of stable cell lines. To prolong transgene expression, we have developed new hybrid vectors which associate key elements from adeno-associated virus (AAV) with the elevated transducing capacity of baculovirus. The hybrid vectors contain a transgene cassette composed of the β-galactosidase (β-Gal) reporter gene and the hygromycin resistance (Hygr) gene flanked by the AAV inverted terminal repeats (ITRs), which are necessary for AAV replication and integration in the host genome. Constructs were derived both with and without the AAVrep gene under the p5 and p19 promoters cloned in different positions with respect to the baculovirus polyheidrin promoter. A high-titer preparation of baculovirus-AAV (Bac-AAV) chimeric virus containing the ITR–Hygr–β-Gal sequence was obtained with insect cells only when the rep gene was placed in an antisense orientation to the polyheidrin promoter. Infection of 293 cells with Bac-AAV virus expressing the rep gene results in a 10- to 50-fold increase in the number of Hygr stable cell clones. Additionally, rep expression determined the localization of the transgene cassette in the aavs1 site in approximately 41% of cases as detected by both Southern blotting and fluorescent in situ hybridization analysis. Moreover, site-specific integration of the ITR-flanked DNA was also detected by PCR amplification of the ITR-aavs1 junction in transduced human fibroblasts. These data indicate that Bac-AAV hybrid vectors can allow permanent, nontoxic gene delivery of DNA constructs for ex vivo treatment of primary human cells.


2005 ◽  
Vol 52 (2) ◽  
pp. 285-291
Author(s):  
Patricia Nuno-Gonzalez ◽  
Hsu Chao ◽  
Kazuhiro Oka

The concept of gene therapy was introduced with great promise and high expectations. However, what appeared simple in theory has not translated into practice. Despite some success in clinical trials, the research community is still facing an old problem: namely, the need for a vector that can deliver a gene to target cells without adverse events while maintaining a long-term therapeutic effect. Some of these challenges are being addressed by the development of hybrid vectors which meld two different viral systems to incorporate efficient gene delivery and large cloning capacity with site-specific integration. The two known systems that integrate genes into specific sites in mammalian genomes are the adeno-associated virus and phage integrases. Recent experiments with hybrid vectors incorporating both of these systems are encouraging. However, extensive research should be directed towards the safety and efficacy of this approach before it will be available for gene therapy.


2002 ◽  
Vol 76 (14) ◽  
pp. 7163-7173 ◽  
Author(s):  
Thomas Heister ◽  
Irma Heid ◽  
Mathias Ackermann ◽  
Cornel Fraefel

ABSTRACT Herpes simplex virus type 1 (HSV-1)-based amplicon vectors have a large transgene capacity and can efficiently infect many different cell types. One disadvantage of HSV-1 vectors is their instability of transgene expression. By contrast, vectors based on adeno-associated virus (AAV) can either persist in an episomal form or integrate into the host cell genome, thereby supporting long-term gene expression. AAV expresses four rep genes, rep68, -78, -40, and -52. Of those, rep68 or rep78 are sufficient to mediate site-specific integration of the AAV DNA into the host cell genome. The major disadvantage of AAV vectors is the small transgene capacity (∼4.6 kb). In this study, we constructed HSV/AAV hybrid vectors that contained, in addition to the standard HSV-1 amplicon elements, AAV rep68, rep78, both rep68 and -78, or all four rep genes and a reporter gene that was flanked by the AAV inverted terminal repeats (ITRs). Southern blots of Hirt DNA from cells transfected with the hybrid vectors and HSV-1 helper DNA demonstrated that both the AAV elements and the HSV-1 elements were functional in the context of the hybrid vector. All hybrid vectors could be packaged into HSV-1 virions, although those containing rep sequences had lower titers than vectors that did not. Site-specific integration at AAVS1 on human chromosome 19 was directly demonstrated by PCR and sequence analysis of ITR-AAVS1 junctions in hybrid vector-transduced 293 cells. Cell clones that stably expressed the transgene for at least 12 months could easily be isolated without chemical selection. In the majority of these clones, the transgene cassette was integrated at AAVS1, and no sequences outside the ITR cassette, rep in particular, were present as determined by PCR, ITR rescue/replication assays, and Southern analysis. Some of the clones contained random integrations of the transgene cassette alone or together with sequences outside the ITR cassette. These data indicate that the long-term transgene expression observed following transduction with HSV/AAV hybrid vectors is, at least in part, supported by chromosomal integration of the transgene cassette, both randomly and site specifically.


Sign in / Sign up

Export Citation Format

Share Document