scholarly journals 858. Adeno-Associated Virus Vector Serotype 8 (AAV8) Achieves a Higher Level of Gene Transfer to the Central Nervous System (CNS) upon Intraventricular Injection in Neonatal Mice Compared to AAV1 and AAV2

2005 ◽  
Vol 11 ◽  
pp. S333-S334
2003 ◽  
pp. 221-236 ◽  
Author(s):  
Matthew J. During ◽  
Deborah Young ◽  
Kristin Baer ◽  
Patricia Lawlor ◽  
Matthias Klugmann

1997 ◽  
Vol 144 (1) ◽  
pp. 113-124 ◽  
Author(s):  
Xiao Xiao ◽  
Juan Li ◽  
Thomas J. McCown ◽  
R.Jude Samulski

2019 ◽  
Vol 116 (23) ◽  
pp. 11402-11407 ◽  
Author(s):  
Tom Haywood ◽  
Corinne Beinat ◽  
Gayatri Gowrishankar ◽  
Chirag B. Patel ◽  
Israt S. Alam ◽  
...  

There is a growing need for monitoring or imaging gene therapy in the central nervous system (CNS). This can be achieved with a positron emission tomography (PET) reporter gene strategy. Here we report the development of a PET reporter gene system using the PKM2 gene with its associated radiotracer [18F]DASA-23. The PKM2 reporter gene was delivered to the brains of mice by adeno-associated virus (AAV9) via stereotactic injection. Serial PET imaging was carried out over 8 wk to assess PKM2 expression. After 8 wk, the brains were excised for further mRNA and protein analysis. PET imaging at 8 wk post-AAV delivery showed an increase in [18F]DASA-23 brain uptake in the transduced site of mice injected with the AAV mice over all controls. We believe PKM2 shows great promise as a PET reporter gene and to date is the only example that can be used in all areas of the CNS without breaking the blood–brain barrier, to monitor gene and cell therapy.


2014 ◽  
pp. 125-197 ◽  
Author(s):  
Boris Kantor ◽  
Rachel M. Bailey ◽  
Keon Wimberly ◽  
Sahana N. Kalburgi ◽  
Steven J. Gray

1975 ◽  
Vol 228 (5) ◽  
pp. 1510-1518 ◽  
Author(s):  
R Spector ◽  
AV Lorenzo

Free myo-inositol (inositol) transport into the cerebrospinal fluid (CSF), brain, and choroid plexus and out of the cerebrospinal fluid was measured in rabbits. In vivo, inositol transport from blood into choroid plexus, CSF, and brain was saturable with an apparent affinity constant (K-t) of approximately 0.1 mM. The relative turnover of free inositol in choroid plexus (16 percent/h) was higher than in CSF 4percent/h) and brain (0.3percent/h) when meausred by tissue penetration of tracer [3-H]-labeled inositol injected into blood. However, the passage of tracer inositol was not greater than the passage of mannitol into brain when measured 15 s after a rapid injection of inositol and mannitol into the left common carotid artery. From the CSF, the clearance of inositol relative to inulin was saturable after the intraventricular injection of various concentrations of inositol and inulin. Moreover, a portion of the inositol cleared from the CSF entered brain by a saturable mechanism. In vitro, choroid plexuses, isolated from rabbits and incubated in artificial CSF, accumulated [3-H-labeled myo-inositol against a concentration gradient by a specific, active, saturable process with a K-t of 0.2 mM inositol. These results were interpreted as showing that the entry of inositol into the central nervous system from blood is regulated by a saturable transport system, and that the locus of this system may be, in part, in the choroid plexus.


Sign in / Sign up

Export Citation Format

Share Document