Myo-inositol transport in the central nervous system

1975 ◽  
Vol 228 (5) ◽  
pp. 1510-1518 ◽  
Author(s):  
R Spector ◽  
AV Lorenzo

Free myo-inositol (inositol) transport into the cerebrospinal fluid (CSF), brain, and choroid plexus and out of the cerebrospinal fluid was measured in rabbits. In vivo, inositol transport from blood into choroid plexus, CSF, and brain was saturable with an apparent affinity constant (K-t) of approximately 0.1 mM. The relative turnover of free inositol in choroid plexus (16 percent/h) was higher than in CSF 4percent/h) and brain (0.3percent/h) when meausred by tissue penetration of tracer [3-H]-labeled inositol injected into blood. However, the passage of tracer inositol was not greater than the passage of mannitol into brain when measured 15 s after a rapid injection of inositol and mannitol into the left common carotid artery. From the CSF, the clearance of inositol relative to inulin was saturable after the intraventricular injection of various concentrations of inositol and inulin. Moreover, a portion of the inositol cleared from the CSF entered brain by a saturable mechanism. In vitro, choroid plexuses, isolated from rabbits and incubated in artificial CSF, accumulated [3-H-labeled myo-inositol against a concentration gradient by a specific, active, saturable process with a K-t of 0.2 mM inositol. These results were interpreted as showing that the entry of inositol into the central nervous system from blood is regulated by a saturable transport system, and that the locus of this system may be, in part, in the choroid plexus.

1999 ◽  
Vol 43 (6) ◽  
pp. 1511-1515 ◽  
Author(s):  
Annie Delon ◽  
Serge Bouquet ◽  
Francois Huguet ◽  
Valerie Brunet ◽  
Philippe Courtois ◽  
...  

ABSTRACT The in vivo convulsant activities in rats of five representative fluoroquinolones (FQs), norfloxacin, enoxacin, sparfloxacin, fleroxacin, and pefloxacin, were compared. The experimental approach allowed distinction between the drugs’ ability to reach the pharmacological receptors at the level of the central nervous system (pharmacokinetic contribution) and their ability to interact with these receptors (pharmacodynamic contribution). The presence of a methyl group on the piperazine moiety decreased the pharmacodynamic contribution to the convulsant activity by severalfold, and the ratios of concentrations of the FQs in cerebrospinal fluid (CSF) to concentrations of unbound FQs in plasma varied from about 5 to 75% as a function of lipophilicity. Interestingly, FQs with the highest intrinsic convulsant activities had the lowest levels of diffusion in CSF and vice versa. This in vivo approach provides information complementary to that of in vitro experiments and should be recommended for early preclinical assessment of a new FQ’s epileptogenic risk.


1986 ◽  
Vol 250 (2) ◽  
pp. R292-R297 ◽  
Author(s):  
R. Spector

The mechanisms by which pantothenic acid (PA) enters and leaves brain, choroid plexus, and cerebrospinal fluid (CSF) were investigated by injecting [3H]PA either intravenously or intraventricularly into adult rabbits. [3H]PA, either alone or together with unlabeled PA, was infused at a constant rate into conscious rabbits. At 180 min, [3H]PA readily entered CSF, choroid plexus, and brain. In brain, CSF, and plasma, greater than 90% of the 3H was associated with [3H]PA. The addition of 200 mumol/kg PA to the infusion syringe decreased the penetration of [3H]PA into brain and CSF by approximately 70%. Two hours after the intraventricular injection of [3H]PA, [3H]PA was rapidly cleared from the CSF by a probenecid-sensitive mechanism. No metabolism of the [3H]PA occurred in brain. However, 18 h after the intraventricular injection of 37 microCi (34 nmol) of [3H]PA, approximately 40% of the 3H remaining in forebrain was converted to [3H]CoA. These results show that PA enters and leaves CSF and brain by saturable transport systems. However, [3H]PA is very slowly converted to [3H]CoA in brain in vivo.


1976 ◽  
Vol 230 (4) ◽  
pp. 1101-1107 ◽  
Author(s):  
R Spector

Total thiamine (free thiamine and thiamine phosphates) transport into the cerebrospinal fluid (CSF), brain, and choroid plexus and out of the CSF was measured in rabbits. In vivo, total thiamine transport into CSF, choroid plexus, and brain was saturable. At the normal plasma total thiamine concentration, less than 5% of total thiamine entry into CSF, choroid plexus, and brain was by simple diffusion. The relative turnovers of total thiamine in choroid plexus, whole brain, and CSF were 5, 2, and 14% per h, respectively, when measured by the penetration of 35S-labeled thiamine injected into blood. From the CSF, clearance of [35S]thiamine relative to mannitol was not saturable after the intraventricular injection of various concentrations of thiamine. However, a portion of the [35S]thiamine cleared from the CSF entered brain by a saturable mechanism. In vitro, choroid plexuses, isolated from rabbits and incubated in artificial CSF, accumulated [35S]thiamine against a concentration gradient by an active saturable process that did not depend on pyrophosphorylation of the [35S]thiamine. The [35S]thiamine accumulated within the choroid plexus in vitro was readily released. These results were interpreted as showing that the entry of total thiamine into the brain and CSF from blood is regulated by a saturable transport system, and that the locus of this system may be, in part, in the choroid plexus.


2016 ◽  
Author(s):  
◽  
Christopher M. Owens

Injuries to nerves vary in their consequences, from weakened sensation and motor function to partial or complete paralysis. In the latter case, affecting about twenty thousand Americans yearly, the injury is debilitating and results in a significant decrease in quality of life. Currently there is no effective treatment for damage to the central nervous system, in particular the spinal cord. Compared to the injuries to the central nervous system, damage in the peripheral nerves, is more common, with about sixty thousand occurrences annually. The cost of associated surgical procedures and due to loss of function is in the billions. In this thesis we present work towards the construction and testing of a fully cellular, patented nerve graft, one amongst the first of its kind. For the fabrication of the graft we are the first to employ bioprinting (either implemented through a special purpose 3D bioprinter or manually), a novel tissue engineering method rapidly gaining acceptance and utility. We first review the status of bioprinting. We then detail the fabrication process. Next we report on the testing of the graft in an in vivo animal model through electrophysiology and histology. This is followed by the introduction of a novel in vitro model, aimed at providing a fast, inexpensive and reliable method to test engineered nerve grafts. We describe our work on the optimization of the in vitro assay and then the testing of the graft using the optimized assay. We conclude with a summary of our accomplishments and make suggestions for some exciting future applications of our approach.


2020 ◽  
Vol 17 (3) ◽  
pp. 1142-1152 ◽  
Author(s):  
Karl E. Carlström ◽  
Praveen K. Chinthakindi ◽  
Belén Espinosa ◽  
Faiez Al Nimer ◽  
Elias S. J. Arnér ◽  
...  

Abstract The Nrf2 transcription factor is a key regulator of redox reactions and considered the main target for the multiple sclerosis (MS) drug dimethyl fumarate (DMF). However, exploration of additional Nrf2-activating compounds is motivated, since DMF displays significant off-target effects and has a relatively poor penetrance to the central nervous system (CNS). We de novo synthesized eight vinyl sulfone and sulfoximine compounds (CH-1–CH-8) and evaluated their capacity to activate the transcription factors Nrf2, NFκB, and HIF1 in comparison with DMF using the pTRAF platform. The novel sulfoximine CH-3 was the most promising candidate and selected for further comparison in vivo and later an experimental model for traumatic brain injury (TBI). CH-3 and DMF displayed comparable capacity to activate Nrf2 and downstream transcripts in vitro, but with less off-target effects on HIF1 from CH-3. This was verified in cultured microglia and oligodendrocytes (OLs) and subsequently in vivo in rats. Following TBI, DMF lowered the number of leukocytes in blood and also decreased axonal degeneration. CH-3 preserved or increased the number of pre-myelinating OL. While both CH-3 and DMF activated Nrf2, CH-3 showed less off-target effects and displayed more selective OL associated effects. Further studies with Nrf2-acting compounds are promising candidates to explore potential myelin protective or regenerative effects in demyelinating disorders.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1542
Author(s):  
Felix Neumaier ◽  
Boris D. Zlatopolskiy ◽  
Bernd Neumaier

Delivery of most drugs into the central nervous system (CNS) is restricted by the blood–brain barrier (BBB), which remains a significant bottleneck for development of novel CNS-targeted therapeutics or molecular tracers for neuroimaging. Consistent failure to reliably predict drug efficiency based on single measures for the rate or extent of brain penetration has led to the emergence of a more holistic framework that integrates data from various in vivo, in situ and in vitro assays to obtain a comprehensive description of drug delivery to and distribution within the brain. Coupled with ongoing development of suitable in vitro BBB models, this integrated approach promises to reduce the incidence of costly late-stage failures in CNS drug development, and could help to overcome some of the technical, economic and ethical issues associated with in vivo studies in animal models. Here, we provide an overview of BBB structure and function in vivo, and a summary of the pharmacokinetic parameters that can be used to determine and predict the rate and extent of drug penetration into the brain. We also review different in vitro models with regard to their inherent shortcomings and potential usefulness for development of fast-acting drugs or neurotracers labeled with short-lived radionuclides. In this regard, a special focus has been set on those systems that are sufficiently well established to be used in laboratories without significant bioengineering expertise.


2020 ◽  
Author(s):  
Daniela C. Ivan ◽  
Sabrina Walthert ◽  
Giuseppe Locatelli

ABSTRACTThe central nervous system (CNS) parenchyma is enclosed by anatomical interfaces including multilayered meninges, the blood-brain barrier (BBB), the choroid plexuses within ventricles and the glia limitans. These border areas hold distinct functional specializations which control the trafficking of monocyte-derived cells toward the CNS parenchyma, altogether maintaining CNS homeostasis. By crossing activated endothelial, epithelial and glial borders, circulating leukocytes gain however access to the CNS parenchyma in several inflammatory diseases including multiple sclerosis.Studies in animal models of neuroinflammation have helped describing the phenotypic specifications of these invading monocyte-derived cells, able to exert detrimental or beneficial functions depending on the local environment. In this context, in vivo visualization of iNOS+ pro-inflammatory and arginase-1+ anti-inflammatory macrophages has recently revealed that these distinct cell phenotypes are highly compartmentalized by CNS borders. While arginase-1+ macrophages densely populate the leptomeninges, iNOS+ macrophages rather accumulate in perivascular spaces and at the pia mater-CNS parenchymal interface.How and where these macrophages acquire their functional commitment, and whether differentially-activated monocyte-derived cells infiltrate the CNS through distinct gateways, remains however unclear.In this study, we have investigated the interaction of monocyte-derived macrophages with endothelial (BBB) and epithelial (choroid plexus) barriers of the CNS, both in vitro and in vivo. By using primary mouse brain microvascular endothelial cells as in vitro model of the BBB, we observed that, compared to unpolarized primary macrophages, adhesion of functionally-committed macrophages to endothelial cells was drastically reduced, literally abrogating their diapedesis across the BBB. Conversely, when interacting with an activated choroid plexus epithelium, both pro- and anti-inflammatory macrophages displayed substantial adhesive and migratory properties. Accordingly, in vivo analysis of choroid plexuses revealed increased macrophage trafficking and a scattered presence of polarized cells upon induction of anti-CNS inflammation.Altogether, we show that acquisition of distinct macrophage polarizations significantly alters the adhesive and migratory properties of these cells in a barrier-specific fashion. While monocytes trafficking at the level of the BBB seem to acquire their signature phenotype only following diapedesis, other anatomical interfaces can be the entry site for functionally activated monocyte-derived cells. Our study highlights the choroid plexus as a key access gateway for macrophages during neuroinflammation, and its stroma as a potential priming site for their functional polarization.


2018 ◽  
Vol 47 (2) ◽  
pp. 842-850 ◽  
Author(s):  
Bo Hu ◽  
Guangtao Xu ◽  
Xiaomin Zhang ◽  
Long Xu ◽  
Hong Zhou ◽  
...  

Background/Aims: Paeoniflorin (PF) is known to have anti-inflammatory and paregoric effects, but the mechanism underlying its analgesic effect remains unclear. The aim of this study was to clarify the effect of PF on Freund’s complete adjuvant (CFA)-induced inflammatory pain and explore the underlying molecular mechanism. Methods: An inflammatory pain model was established by intraplantar injection of CFA in C57BL/6J mice. After intrathecal injection of PF daily for 8 consecutive days, thermal and mechanical withdrawal thresholds, the levels of inflammatory factors TNF-α, IL-1β and IL-6, microglial activity, and the expression of Akt-NF-κB signaling pathway in the spinal cord tissue were detected by animal ethological test, cell culture, enzyme-linked immunosorbent assay, immunofluorescence histochemistry, and western blot. Results: PF inhibited the spinal microglial activation in the CFA-induced pain model. The production of proinflammatory cytokines was decreased in the central nervous system after PF treatment both in vivo and in vitro. PF further displayed a remarkable effect on inhibiting the activation of Akt-NF-κB signaling pathway in vivo and in vitro. Conclusion: These results suggest that PF is a potential therapeutic agent for inflammatory pain and merits further investigation.


Sign in / Sign up

Export Citation Format

Share Document