Leak monitoring and localization in baghouse filtration system using a distributed optical fiber dynamic air pressure sensor

2020 ◽  
Vol 57 ◽  
pp. 102218
Author(s):  
J. Li ◽  
X. Lu ◽  
W.F. Wang
Micromachines ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 717 ◽  
Author(s):  
Xin Cheng ◽  
Yi Liu ◽  
Changyuan Yu

This paper presents a high sensitivity gas pressure sensor with benzyl-dimethylketal (BDK)-doped polymer optical fiber Bragg grating (POFBG), whose sensitivity is up to 8.12 pm/kPa and 12.12 pm/kPa in positive and negative pressure atmosphere, respectively. The high sensitivity can be explained by its porous chemical structure. The stability and response behavior under air pressure atmosphere has also been investigated. The new understanding of the air pressure response principle and sensitivity difference for the presented sensor can be a worthy reference.


1998 ◽  
Author(s):  
Haibao Lu ◽  
Xingchun Chu ◽  
Wusheng Luo ◽  
Tingzheng Shen ◽  
Huayong Yang

AIP Advances ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 025038
Author(s):  
Lang Bai ◽  
Gang Zheng ◽  
Bin Sun ◽  
Xiongxing Zhang ◽  
Qiming Sheng ◽  
...  

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1166
Author(s):  
Bin Liu ◽  
Jianping He ◽  
Shihai Zhang ◽  
Yinping Zhang ◽  
Jianan Yu ◽  
...  

Brillouin frequency shift (BFS) of distributed optical fiber sensor is extracted from the Brillouin gain spectrum (BGS), which is often characterized by Lorenz type. However, in the case of complex stress and optical fiber self damage, the BGS will deviate from Lorenz type and be asymmetric, which leads to the extraction error of BFS. In order to enhance the extraction accuracy of BFS, the Lorenz local single peak fitting algorithm was developed to fit the Brillouin gain spectrum curve, which can make the BSG symmetrical with respect to the Brillouin center frequency shift. One temperature test of a fiber-reinforced polymer (FRP) packaged sensor whose BSG curve is asymmetric was conducted to verify the idea. The results show that the local region curve of BSG processed by the developed algorithm has good symmetry, and the temperature measurement accuracy obtained by the developed algorithm is higher than that directly measured by demodulation equipment. Comparison with the reference temperature, the relative measurement error measured by the developed algorithm and BOTDA are within 4% and 8%, respectively.


Sign in / Sign up

Export Citation Format

Share Document