scholarly journals Fiber optic sensors based on circular and elliptical polymer optical fiber for measuring refractive index of liquids

2022 ◽  
Vol 68 ◽  
pp. 102812
Author(s):  
Fei Ye ◽  
Cui Tian ◽  
Cuihua Ma ◽  
Zhi Feng Zhang
Author(s):  
А.D. Меkhtiyev ◽  
◽  
E.G. Neshina ◽  
P.Sh. Madi ◽  
D.A. Gorokhov ◽  
...  

This article ls with the issues related to the development of a system for monitoring the deformation and displacement of the rock mass leading to the collapse of the quarry sides. Monitoring system uses point-to-point fiber-optic sensors. Fiber-optic sensors and control cables of the communication line are made based on the single mode optical fibers, which allows to measure with high accuracy the deformations and displacements of the rock mass at a distance of 30-50 km. To create fiber-optic pressure sensors, an optical fiber of the ITU-T G. 652.D standard is used. Laboratory sample is developed concerning the point fiber-optic sensor made based on the two-arm Mach-Zender interferometer using a single mode optical fiber for monitoring strain (displacements) with a change in the sensitivity and a reduced influence of temperature interference leading to zero drift. The article presents a mathematical apparatus for calculating the intensity of radiation of a light wave passing through an optical fiber with and without mechanical stress. A laboratory sample of single mode optical fibers based on the Mach-Zender interferometer showed a fairly high linearity and accuracy in the measurement and can be used to control the strain of the mass after appropriate refinement of its design. Mathematical expressions are also given for determining the intensity of the light wave when the distance between the fixing points of a single mode optical fiber changes depending on the change in the external temperature. A diagram for measuring strain using a point fiber-optic strain sensor is developed. Hardware and software package is developed, which can be used to perform a number of settings of measuring channels. The work is aimed at solving the production problems of the Kenzhem quarry of AK Altynalmas JSC.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2124 ◽  
Author(s):  
Monika Kosowska ◽  
Daria Majchrowicz ◽  
Kamatchi J. Sankaran ◽  
Mateusz Ficek ◽  
Ken Haenen ◽  
...  

This paper reports the application of doped nanocrystalline diamond (NCD) films—nitrogen-doped NCD and boron-doped NCD—as reflective surfaces in an interferometric sensor of refractive index dedicated to the measurements of liquids. The sensor is constructed as a Fabry–Pérot interferometer, working in the reflective mode. The diamond films were deposited on silicon substrates by a microwave plasma enhanced chemical vapor deposition system. The measurements of refractive indices of liquids were carried out in the range of 1.3 to 1.6. The results of initial investigations show that doped NCD films can be successfully used in fiber-optic sensors of refractive index providing linear work characteristics. Their application can prolong the lifespan of the measurement head and open the way to measure biomedical samples and aggressive chemicals.


Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 306 ◽  
Author(s):  
Paulina Listewnik ◽  
Marzena Hirsch ◽  
Przemysław Struk ◽  
Matthieu Weber ◽  
Mikhael Bechelany ◽  
...  

We report the fabrication of a novel fiber-optic sensor device, based on the use of a microsphere conformally coated with a thin layer of zinc oxide (ZnO) by atomic layer deposition (ALD), and its use as a refractive index sensor. The microsphere was prepared on the tip of a single-mode optical fiber, on which a conformal ZnO thin film of 200 nm was deposited using an ALD process based on diethyl zinc (DEZ) and water at 100 °C. The modified fiber-optic microsphere was examined using scanning electron microscopy and Raman spectroscopy. Theoretical modeling has been carried out to assess the structure performance, and the performed experimental measurements carried out confirmed the enhanced sensing abilities when the microsphere was coated with a ZnO layer. The fabricated refractive index sensor was operating in a reflective mode of a Fabry–Pérot configuration, using a low coherent measurement system. The application of the ALD ZnO coating enabled for a better measurement of the refractive index of samples in the range of the refractive index allowed by the optical fiber. The proof-of-concept results presented in this work open prospects for the sensing community and will promote the use of fiber-optic sensing technologies.


1997 ◽  
Vol 503 ◽  
Author(s):  
F. Ansari

ABSTRACTIt is possible to monitor the initiation and progress of various mechanical or environmentally induced perturbations in concrete elements by way of fully integrated optical fiber sensors. Geometric adaptability and ease by which optical fibers can be embedded within concrete elements has led to the development of a number of innovative applications for concrete elements. This article is intended for a brief introduction into the theories, principles, and applications of fiber optic sensors as they pertain to applications in concrete.. However, due to the fact that the transduction mechanism in optical fibers is invariant of the materials employed, the principles introduced here also correspond to other structural materials. The only application related differences among various materials pertain to sensitivity and choice of optical fiber sensor types.


1997 ◽  
Author(s):  
Brian K. Canfield ◽  
Joshua A. Clearman ◽  
Mark G. Kuzyk ◽  
Christopher S. Kwiatkowski

1997 ◽  
Vol 15 (11) ◽  
pp. 2095-2100 ◽  
Author(s):  
T. Ishigure ◽  
M. Satoh ◽  
O. Takanashi ◽  
E. Nihei ◽  
T. Nyu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document