scholarly journals An exposure:activity profiling method for interpreting high-throughput screening data for estrogenic activity—Proof of concept

2015 ◽  
Vol 71 (3) ◽  
pp. 398-408 ◽  
Author(s):  
Richard A. Becker ◽  
Katie Paul Friedman ◽  
Ted W. Simon ◽  
M. Sue Marty ◽  
Grace Patlewicz ◽  
...  
2021 ◽  
Vol 26 (6) ◽  
pp. 579-590
Author(s):  
Sam Elder ◽  
Carleen Klumpp-Thomas ◽  
Adam Yasgar ◽  
Jameson Travers ◽  
Shayne Frebert ◽  
...  

Current high-throughput screening assay optimization is often a manual and time-consuming process, even when utilizing design-of-experiment approaches. A cross-platform, Cloud-based Bayesian optimization-based algorithm was developed as part of the National Center for Advancing Translational Sciences (NCATS) ASPIRE (A Specialized Platform for Innovative Research Exploration) Initiative to accelerate preclinical drug discovery. A cell-free assay for papain enzymatic activity was used as proof of concept for biological assay development and system operationalization. Compared with a brute-force approach that sequentially tested all 294 assay conditions to find the global optimum, the Bayesian optimization algorithm could find suitable conditions for optimal assay performance by testing 21 assay conditions on average, with up to 20 conditions being tested simultaneously, as confirmed by repeated simulation. The algorithm could achieve a sevenfold reduction in costs for lab supplies and high-throughput experimentation runtime, all while being controlled from a remote site through a secure connection. Based on this proof of concept, this technology is expected to be applied to more complex biological assays and automated chemistry reaction screening at NCATS, and should be transferable to other institutions. Graphical Abstract


2018 ◽  
Vol 295 ◽  
pp. S142
Author(s):  
J.L. Nguyen ◽  
A. Maier ◽  
J. Ovesen ◽  
N. Kleinstreuer ◽  
R. Judson ◽  
...  

2007 ◽  
Vol 12 (3) ◽  
pp. 406-417 ◽  
Author(s):  
Jun Y. Park ◽  
M. Amin Arnaout ◽  
Vineet Gupta

The leukocyte-specific integrin CD11b/CD18 plays a key role in the biological function of these cells and represents a validated therapeutic target for inflammatory diseases. Currently, the low affinity interaction between CD11b/CD18 integrin and its respective ligand poses a challenge in the development of cell-based adhesion assays for the high-throughput screening (HTS) environment. Here the authors describe a simple cell-based adhesion assay that can be readily used for HTS for the discovery of functional regulators of CD11b/CD18. The assay consistently produces acceptable Z' values (> 0.5) for HTS. After testing the assay using 2 established blocking antibodies as reference biologicals, the authors performed a proof-of-concept primary screen using a library of 6612 compounds and identified both agonist and antagonist hits. ( Journal of Biomolecular Screening 2007:406-417)


2021 ◽  
Author(s):  
Sam Elder ◽  
Carleen Klumpp-Thomas ◽  
Adam Yasgar ◽  
Jameson Travers ◽  
Shayne Frebert ◽  
...  

Current high-throughput screening assay optimization is often a manual and time-consuming process, even when utilizing design-of-experiment approaches. A cross-platform, Cloud-based Bayesian optimization-based algorithm was developed as part of the NCATS ASPIRE Initiative to accelerate preclinical drug discovery. A cell-free assay for papain enzymatic activity was used as proof-of-concept for biological assay development. Compared to a brute force approach that sequentially tested all 294 assay conditions to find the global optimum, the Bayesian optimization algorithm could find suitable conditions for optimal assay performance by testing only 21 assay conditions on average, with up to 20 conditions being tested simultaneously. The algorithm could achieve a seven-fold reduction in costs for lab supplies and high-throughput experimentation run-time, all while being controlled from a remote site through a secure connection. Based on this proof-of-concept, this technology is expected to be applied to more complex biological assays and automated chemistry reaction screening at NCATS, and should be transferable to other institutions.


Author(s):  
Natthida Sophon ◽  
Choladda Phiwpesh ◽  
Sieng Darith ◽  
Wichai Cherdshewasart ◽  
Chuenchit Boonchird

Abstract A yeast estrogen screening (YES) assay was improved to increase sensitivity for detection of phytoestrogens. New yeast strains minus one or the other of transporters Pdr5 or Snq2 and harboring yEGFP as a reporter gene were developed. The new strains showed 2–100 fold improvement in sensitivity for detection of standard estrogens and anti-estrogens. In addition, the assay time (1h) using the newly developed strains was shorter than that (4h) previously reported. Furthermore, the snq2-minus strains were most effective for detection of estrogenic activity while the pdr5-minus strains were most effective for detection of anti-estrogenic activity. The efficacy of the new methods was evaluated and confirmed by testing with 23 Thai medicinal plant species. The new strains were also tested for detection of xenoestrogens. The results revealed that the newly developed YES methods were specific and rapid and suitable for simple high-throughput screening or detection of estrogen-like compounds.


Antibiotics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 65 ◽  
Author(s):  
Ashley S. Brott ◽  
Carys S. Jones ◽  
Anthony J. Clarke

The O-acetylation of peptidoglycan occurs in many Gram-negative and most Gram-positive pathogens and this modification to the essential wall polymer controls the lytic activity of the autolysins, particularly the lytic transglycosylases, and inhibits that of the lysozymes of innate immunity systems. As such, the peptidoglycan O-acetyltransferases PatA/B and OatA are recognized as virulence factors. In this study, we present the high throughput screening of small compound libraries to identify the first known inhibitors of these enzymes. The fluorometric screening assay developed involved monitoring the respective O-acetyltransferases as esterases using 4-methylumbelliferylacetate as substrate. Pilot screens of 3921 compounds validated the usefulness of the HTS protocol. A number of potential inhibitors were identified amongst a total of 145,000 low molecular-weight compounds, some of which were common to both enzymes, while others were unique to each. After eliminating a number of false positives in secondary screens, dose response curves confirmed the apparent specificity of a benzothiazolyl-pyrazolo-pyridine as an inhibitor of Neisseria gonorrhoeae PatB, and several coumarin-based compounds as inhibitors of both this PatB and OatA from Staphylococcus aureus. The benzothiazolyl-pyrazolo-pyridine was determined to be a non-competitive inhibitor of PatB with a Ki of 126 µM. At 177 µg/mL and close to its solubility limit, this compound caused a 90% reduction in growth of N. gonorrhoeae, while growth of Escherichia coli, a bacterium that lacks PatB and, hence, does not produce O-acetylated peptidoglycan, was unaffected. These data provide preliminary proof of concept that peptidoglycan O-acetyltransferases would serve as useful antibacterial targets.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
L Hingorani ◽  
NP Seeram ◽  
B Ebersole

Sign in / Sign up

Export Citation Format

Share Document