Hydrophobic mechanochemical treatment of metallic surfaces

2002 ◽  
Vol 97 (1-3) ◽  
pp. 179-203 ◽  
Author(s):  
V Roucoules ◽  
F Gaillard ◽  
T.G Mathia ◽  
P Lanteri
Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1194
Author(s):  
Thejus Pathmakumar ◽  
Madan Mohan Rayguru ◽  
Sriharsha Ghanta ◽  
Manivannan Kalimuthu ◽  
Mohan Rajesh Elara

The hydro blasting of metallic surfaces is an essential maintenance task in various industrial sites. Its requirement of a considerable labour force and time, calls for automating the hydro blasting jobs through mobile robots. A hydro blasting robot should be able to cover the required area for a successful implementation. If a conventional robot footprint is chosen, the blasting may become inefficient, even though the concerned area is completely covered. In this work, the blasting arm’s sweeping angle is chosen as the robot’s footprint for hydro blasting task, and a multi-objective optimization-based framework is proposed to compute the optimal sweeping arc. The genetic algorithm (GA) methodology is exploited to compute the optimal footprint, which minimizes the blasting time and energy simultaneously. Multiple numerical simulations are performed to show the effectiveness of the proposed approach. Moreover, the strategy is successfully implemented on our hydro blasting robot named Hornbill, and the efficacy of the proposed approach is validated through experimental trials.


2013 ◽  
Vol 78 (4) ◽  
pp. 579-590 ◽  
Author(s):  
Aleksandra Mitrovic ◽  
Miodrag Zdujic

Mechanochemical treatment of Serbian kaolin clay was carried out in a planetary ball mill using two different milling media, hardened steel or zirconia vials and balls. The samples obtained with various milling times were characterized by the particle size laser diffraction (PSLD), X-ray diffraction (XRD), differential scanning calorimetry/thermogravimetry (DTA/TGA) and Fourier-transform infrared (FTIR) analyses. Mechanochemical treatment induced amorphization of the kaolinite phase accompanied by dehydroxylation. It was found that for the given milling parameters, amorphization mainly took place in the milling period up to 15 min, and was completed after about 30 min of milling for both milling media used. The pozzolanic activities were determined by the Chapelle method. Milling in the hardened steel milling medium had no significant influence on pozzolanic activity, even though there was accumulated iron contamination. For both milling media, pozzolanic activity of 0.79 was obtained for the samples milled for 15 min and it remained almost unchanged with prolonged milling. The determined pozzolanic activity values are close to these of commercial metakaolinite or metakaolinite obtained by the calcination of the same clay, therefore, indicating possibility for obtaining high reactive pozzolana by mechanochemical treatment of Serbian kaoline clay.


Sign in / Sign up

Export Citation Format

Share Document