Acute megakaryoblastic leukemia in Down syndrome: orbital infiltration

2000 ◽  
Vol 130 (1) ◽  
pp. 128-130 ◽  
Author(s):  
Jeffrey L Olson ◽  
Michael J May ◽  
Linda Stork ◽  
Nina Kadan ◽  
J.Bronwyn Bateman
2017 ◽  
Vol 56 (5) ◽  
pp. 394-404 ◽  
Author(s):  
Yusuke Hara ◽  
Norio Shiba ◽  
Kentaro Ohki ◽  
Ken Tabuchi ◽  
Genki Yamato ◽  
...  

2014 ◽  
Vol 7 (1) ◽  
Author(s):  
Maria Chiara Pelleri ◽  
Allison Piovesan ◽  
Maria Caracausi ◽  
Anna Concetta Berardi ◽  
Lorenza Vitale ◽  
...  

Blood ◽  
2001 ◽  
Vol 97 (12) ◽  
pp. 3727-3732 ◽  
Author(s):  
Uma H. Athale ◽  
Bassem I. Razzouk ◽  
Susana C. Raimondi ◽  
Xin Tong ◽  
Frederick G. Behm ◽  
...  

To describe the clinical and biologic features of pediatric acute megakaryoblastic leukemia (AMKL) and to identify prognostic factors, experience at St Jude Children's Research Hospital was reviewed. Of 281 patients with acute myeloid leukemia treated over a 14-year period, 41 (14.6%) had a diagnosis of AMKL. Six patients had Down syndrome and AMKL, 6 had secondary AMKL, and 29 had de novo AMKL. The median age of the 22 boys and 19 girls was 23.9 months (range, 6.7-208.9 months). The rate of remission induction was 60.5%, with a 48% rate of subsequent relapse. Patients with Down syndrome had a significantly higher 2-year event-free survival (EFS) estimate (83%) than did other patients with de novo AMKL (14%) or with secondary AMKL (20%;P ≤ .038). Among patients who had de novo AMKL without Down syndrome, 2-year EFS was significantly higher after allogeneic bone marrow transplantation (26%) than after chemotherapy alone (0%;P = .019) and significantly higher when performed during remission (46%) than when performed during persistent disease (0%;P = .019). The 5-year survival estimates were significantly lower for de novo AMKL (10%) than for other forms of de novo AML (42%; P < .001). Treatment outcome is very poor for patients with AMKL in the absence of Down syndrome. Remission induction is the most important prognostic factor. Allogeneic transplantation during remission offers the best chance of cure; in the absence of remission, transplantation offers no advantage over chemotherapy alone.


2017 ◽  
Vol 229 (06) ◽  
pp. 352-354 ◽  
Author(s):  
Eva Schmidt ◽  
Ute Fischer ◽  
Wolfgang Biskup ◽  
Claudia Haferlach ◽  
Roland Meisel ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4325-4325
Author(s):  
Christian M. Zwaan ◽  
Mathilde J.C. Broekhuis ◽  
Claudia Langebrake ◽  
Bianca F. Goemans ◽  
Gertjan J.L. Kaspers ◽  
...  

Abstract Activating mutations at codon 617 of the Janus-2 tyrosine kinase (JAK2 V617F) have recently been described in hematological malignancies. In adult acute myeloid leukemia (AML), the reported frequencies vary, and JAK2 V617F mutations have mainly been detected in secondary AML following a myeloproliferative disorder. In adult de novo AML, the mutation was less frequent, and detected in 2/11 (18%) acute megakaryoblastic leukemia (FAB M7) samples (Jelinek et al., Blood 2005), and occasionally in other FAB-types. This prompted us to analyze a cohort of pediatric AML FAB M7 samples for this particular mutation. In children, at least 3 different subsets of AML M7 can be identified: infants with AML M7 characterized by t(1;22)(p13;q13), older children with random cytogenetic aberrations, and myeloid leukemia of Down syndrome (DS ML). DS ML is often preceded by transient myeloproliferative disease (TMD), hence we also screened TMD samples to detect whether JAK2 V617F mutations would be involved in clonal evolution from TMD to DS ML. To exclude germ-line mutations in DS, we tested normal mononuclear bone marrow cells (NBMC) from children with DS. These NBMC were obtained from a sternal aspirate from children undergoing cardiac surgery, after informed consent was obtained. Genomic DNA was harvested from leukemic cells, and JAK2 exon 12, including the intron-flanking regions, was amplified and sequenced to screen for the JAK2 V617F mutation. As a positive control for the JAK2 V617F mutation, we used HEL 92.1.7 cells (an erythroleukemic cell line). In a dilution experiment we could still detect the mutation, using direct sequencing, if 10% HEL/JAK2 mutated cells were mixed with 90% wild-type control cells. We tested 49 samples, comprising of 9 NBMC, 11 TMD, 14 DS-ML M7, 11 non-DS AML M7 and 4 relapsed non-DS AML M7 samples (including 2 initial diagnosis-relapse pairs). The median age of the TMD cohort was 3 days, for DS-ML children 1.9 years (range 0.9–3.8 yrs), and for non-DS AML 1.5 years (range 1.2–13.7 yrs). The median white blood cell count for TMD was 25.8x109/l, for DS-ML 13.8x109/l, and for non-DS AML 12.4x109/l. Cytogenetic data were available in 5/11 non-DS AML cases only, which showed no cases with a t(1;22). No JAK2 V617F mutations were detected in any of the clinical samples. We conclude that the role of JAK2 V617F mutations in pediatric DS and non-DS acute megakaryoblastic leukemia is limited at best. However, we were not able to screen the subgroup of non-DS AML cases with t(1;22).


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1620-1620
Author(s):  
Tomohiko Sato ◽  
Tsutomu Toki ◽  
Rika Kanezaki ◽  
Gang Xu ◽  
Kiminori Terui ◽  
...  

Abstract Children with Down syndrome (DS) have an approximately 20-fold higher incidence of leukemia than the general population. The majority of leukemia cases associated with DS are acute megakaryoblastic leukemia (AMKL). Although GATA1 mutations have been found in almost all cases of transient myeloproliferative disorder (TMD) “a preleukemia” that may be present in as many as 10% of newborn infants with DS and AMKL accompanying DS (DS-AMKL), GATA1 mutation alone may not be sufficient for development of leukemia. Following identification of acquired activating JAK3 mutations in DS-AMKL, JAK3 mutations have been reported also in TMD patients. However, the frequency and functional consequence of JAK3 mutations in TMD remain unknown. To further understand how JAK3 mutations are involved in the development and/or progression of leukemia in DS, we screened TMD patients and two DS-AMKL cell lines for JAK3 mutation, and examined the functional consequences of these JAK3 mutations. In one out of the two DS-AMKL cell lines, MGS, we identified novel JAK3 mutations (JAK3Q501H mutation in the SH2 domain and JAK3R657Q mutation in the psuedokinase domain in the same allele). JAK3Q501H and JAK3R657Q each constitutively phosphorylates STAT5 and transformes Ba/F3 cells to factor-independent growth, whereas the double mutant (JAK3Q501H and JAK3R657Q) has more potent transforming activity than each mutant. Biochemichal analysis in Ba/F3 cells revealed that the degrees of phosphorylation of STAT5 in the cells transduced with each JAK3 mutant were correlated with its transforming activity. Although we previously identified a JAK3I87T mutation in one of two TMD patients, no JAK3 mutations were detected in another 9 TMD patients. Together with the previous results, we found JAK3 mutations in each of 11 TMD and 11 DS-AMKL patients. Although the number of the patients analyzed was small, these results indicate that there are no significant differences in the frequency of JAK3 mutations between TMD and DS-AMKL. In this study, we showed for the first time that the TMD patient-derived JAK3 mutation was also an activating one. JAK3I87T transformed Ba/F3 cells to factor-independent growth. Treatment with JAK3 inhibitors (WHI-P131 and WHI-P154) resulted in a significant decrease in the growth and viability of Ba/F3 cells expressing each activating JAK3 mutant. These results suggest that the JAK3 activating mutation is an early event during the development of AMKL in DS. Furthermore these results provide a proof-of-principle that JAK3 inhibitor should have therapeutic effects on the AMKL and TMD patients carrying the activating JAK3 mutations.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 888-888 ◽  
Author(s):  
Katarina Reinhardt ◽  
C. Michel Zwaan ◽  
Michael Dworzak ◽  
Jasmijn D.E. de Rooij ◽  
Gertjan Kaspers ◽  
...  

Abstract Abstract 888 Introduction: Pediatric acute megakaryoblastic leukemia (AMKL) occurred in 6.6% (84/1271) of the children enrolled to the AML-BFM98 and 2004 studies. Despite a similar phenotype in morphology and immunophenotype, AMKL shows a heterogenous cytogenetic distribution (normal karyotype 23%, complex karyotype 21%, t(1;22) 9%; MLL-rearrangement 8%; monosomy 7 5%, trisomy 8 5%; other aberrations 29%). Mutations of the hematopoietic transcription factor GATA1 have been identified in almost all children suffering myeloid leukemia of Down syndrome (ML-DS). In addition, GATA1 mutations (GATA1mut) could be identified in children with trisomy 21 mosaic. Here, AMKL without evidence of Down syndrome or Down syndrome mosaic were analyzed for mutations in exon 1, 2 or 3 of the transcription factor GATA1. Patients: Seventy-one children from the AML-BFM Study group (n=51; 2000–2011), the Netherlands (n=10), France (n=3) and Scandinavia (n=7) were included. Within the AML-BFM Group the 51 analyzed patients showed similar characteristics compared to the total cohort of 84 children with AMKL of the AML-BFM 98 and 2004 studies. AMKL was confirmed according to the WHO classification by genetics (t(1;22)); morphology and immunophenotyping. Table 1a) summarizes the patientxs characteristics and b) the cytogenetic results. Methods: For GATA1 mutation screening genomic DNA was amplified by PCR reaction for exon 1, 2, and 3. PCR amplicons were analyzed by direct sequencing or following denaturing high-performance liquid chromatography (WAVE). Results: Seven different GATA1 mutations were detected in 8 children (11.1%; table 2). In all GATA1mut leukemia, a trisomy 21 within the leukemic blasts could be detected. Seven out of these 8 children and all other 64 AMKL patients have been treated with intensive chemotherapy regimens according the study group protocols. The results are given in table 2. All achieved continuous complete remission (CCR; 0.4 to 4.2 years). In one newborn with typical morphology and immunophenotype a GATA1mut associated transient leukemia was supposed. The child achieved CCR (follow-up 6 years). In total, allogeneic stem cell transplantation in 1st CR was performed in 6 children with AMKL (GATA1mut leukemia n=1). Conclusions: GATA1 mutations occurred in 11% of children with AMKL without any symptoms or evidence of trisomy 21 or trisomy 21 mosaic. GATA1 mutations are associated with a trisomy 21 within the leukemic blasts. Although non-response occurred, prognosis was significant better compared to other AMKL. Therefore, analysis of GATA1 mutation in infant AMKL is strongly recommended. Whether treatment reduction similar to ML-DS Down syndrome is feasible needs to be confirmed. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 53 ◽  
pp. S66
Author(s):  
Theresa Hack ◽  
Stephanie Sendker ◽  
Nils von Neuhoff ◽  
Dirk Reinhardt ◽  
Mareike Rasche

Sign in / Sign up

Export Citation Format

Share Document