Inhibition of phorbol ester-caused induction of ornithine decarboxylase and tumor promotion in mouse skin by staurosporine, a potent inhibitor of protein kinase C

1988 ◽  
Vol 157 (1) ◽  
pp. 9-15 ◽  
Author(s):  
Shuhei Yamada ◽  
Kenji Hirota ◽  
Kazuhiro Chida ◽  
Toshio Kuroki
1992 ◽  
Vol 3 (9) ◽  
pp. 1049-1056 ◽  
Author(s):  
H Eldar ◽  
E Livneh

Cell lines stably overexpressing protein kinase C (PKC)-alpha were previously described by us. These cell lines were generated by the introduction of the full length cDNA coding for PKC-alpha into Swiss/3T3 cells. Here we show that activation of PKC-alpha by phorbol-esters induced in these cells specific phosphorylation of two cellular proteins p90 and p52. Phosphorylation of p80 (MARCKS protein), previously identified as a substrate for PKC, was also enhanced. Phosphorylated p90 and p52 proteins were associated with particulate membrane-enriched fractions and were extractable with the use of nonionic detergents. Time course analysis of phorbol-ester induced phosphorylation of p90 and p52 revealed maximal stimulation of phosphorylation after 15-30 min. Phosphamino acid analysis showed that phosphorylation of p90 and p52 occurred mainly on serine residues. Phosphorylation of p52 was also on threonine residues. Whereas, phorbol ester activation induced phosphorylation of both p90 and p52, the mitogens platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) enhanced phosphorylation of p90, but not p52. Thus, our studies showed the involvement of PKC-alpha in the regulation of p90 and p52 phosphorylation and provided direct evidence for the role of PKC-alpha in cellular signaling by PDGF and FGF. Moreover, the fact that phosphorylation of p52 was specific to phorbol ester activation may suggest its involvement in tumor promotion. Characterization of p90 and p52 will enable us to reveal the phosphorylation cascade activated downstream to PKC-alpha and to determine their role in mitogenic signaling and tumor promotion.


2001 ◽  
Vol 93 (5) ◽  
pp. 635-643 ◽  
Author(s):  
Aaron P. Jansen ◽  
Nancy E. Dreckschmidt ◽  
Eric G. Verwiebe ◽  
Deric L. Wheeler ◽  
Terry D. Oberley ◽  
...  

2007 ◽  
Vol 292 (1) ◽  
pp. C24-C32 ◽  
Author(s):  
Elizabeth V. Wattenberg

Palytoxin is a novel skin tumor promoter, which has been used to help probe the role of different types of signaling mechanisms in carcinogenesis. The multistage mouse skin model indicates that tumor promotion is an early, prolonged, and reversible phase of carcinogenesis. Understanding the molecular mechanisms underlying tumor promotion is therefore important for developing strategies to prevent and treat cancer. Naturally occurring tumor promoters that bind to specific cellular receptors have proven to be useful tools for investigating important biochemical events in multistage carcinogenesis. For example, the identification of protein kinase C as the receptor for the prototypical skin tumor promoter 12- O-tetradecanoylphorbol-13-acetate (TPA) (also called phorbol 12-myristate 13-acetate, PMA) provided key evidence that tumor promotion involves the aberrant modulation of signaling cascades that govern cell fate and function. The subsequent discovery that palytoxin, a marine toxin isolated from zoanthids (genus Palythoa), is a potent skin tumor promoter yet does not activate protein kinase C indicated that investigating palytoxin action could help reveal new aspects of tumor promotion. Interestingly, the putative receptor for palytoxin is the Na+,K+-ATPase. This review focuses on palytoxin-stimulated signaling and how palytoxin has been used to investigate alternate biochemical mechanisms by which important targets in carcinogenesis can be modulated.


Sign in / Sign up

Export Citation Format

Share Document