Excitotoxic lesions of the medial prefrontal cortex attenuate fear responses in the elevated-plus maze, social interaction and shock probe burying tests

2003 ◽  
Vol 969 (1-2) ◽  
pp. 183-194 ◽  
Author(s):  
Akeel A Shah ◽  
Dallas Treit
2013 ◽  
Vol 25 (4) ◽  
pp. 221-226 ◽  
Author(s):  
Jalal Solati ◽  
Ramin Hajikhani ◽  
Yulia Golub

ObjectivesThere has been increasing evidence that the γ-aminobutyric acid (GABA)ergic system is involved in the neurobiology of anxiety. The present study aimed to investigate the role of GABAergic systems in the modulation of anxiety in the medial prefrontal cortex (mPFC) of rats using the elevated plus maze test.MethodsRats were anaesthetised with a mixture of ketamine and xylazine, and then special cannulae were inserted stereotaxically into the mPFC. After 5–7 days of recovery, the effects of intra-mPFC administration of GABAergic agents were studied.ResultsBilateral injection of the GABAA receptor agonist muscimol (0.25, 0.5 and 1 μg/rat) produces an anxiolytic-like effect, shown by significant increases in the percentage of open-arm time (%OAT) and percentage of open-arm entries (%OAE). Intra-mPFC administration of the GABAA receptor antagonist bicuculline (0.25, 0.5 and 1 μg/rat) produces significant anxiogenic-like behaviour. However, intra-mPFC injection of the GABAB receptor agonist baclofen (0.05, 0.1 and 0.2 μg/rat) and the GABAB receptor antagonist CGP35348 (5, 10 and 15 μg/rat) did not alter %OAT and %OAE significantly.ConclusionThe results of the present study demonstrate that the GABAergic system of the mPFC modulates anxiety-related behaviours of rats through GABAA receptors.


2019 ◽  
Vol 374 (1771) ◽  
pp. 20180033 ◽  
Author(s):  
Birgit Rauchbauer ◽  
Bruno Nazarian ◽  
Morgane Bourhis ◽  
Magalie Ochs ◽  
Laurent Prévot ◽  
...  

We present a novel functional magnetic resonance imaging paradigm for second-person neuroscience. The paradigm compares a human social interaction (human–human interaction, HHI) to an interaction with a conversational robot (human–robot interaction, HRI). The social interaction consists of 1 min blocks of live bidirectional discussion between the scanned participant and the human or robot agent. A final sample of 21 participants is included in the corpus comprising physiological (blood oxygen level-dependent, respiration and peripheral blood flow) and behavioural (recorded speech from all interlocutors, eye tracking from the scanned participant, face recording of the human and robot agents) data. Here, we present the first analysis of this corpus, contrasting neural activity between HHI and HRI. We hypothesized that independently of differences in behaviour between interactions with the human and robot agent, neural markers of mentalizing (temporoparietal junction (TPJ) and medial prefrontal cortex) and social motivation (hypothalamus and amygdala) would only be active in HHI. Results confirmed significantly increased response associated with HHI in the TPJ, hypothalamus and amygdala, but not in the medial prefrontal cortex. Future analysis of this corpus will include fine-grained characterization of verbal and non-verbal behaviours recorded during the interaction to investigate their neural correlates. This article is part of the theme issue ‘From social brains to social robots: applying neurocognitive insights to human–robot interaction'.


Sign in / Sign up

Export Citation Format

Share Document